Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190334976> ?p ?o ?g. }
- W3190334976 endingPage "3065" @default.
- W3190334976 startingPage "3065" @default.
- W3190334976 abstract "Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset." @default.
- W3190334976 created "2021-08-16" @default.
- W3190334976 creator A5007419647 @default.
- W3190334976 creator A5019685555 @default.
- W3190334976 creator A5020880531 @default.
- W3190334976 creator A5046069241 @default.
- W3190334976 creator A5081675173 @default.
- W3190334976 creator A5089962816 @default.
- W3190334976 date "2021-08-04" @default.
- W3190334976 modified "2023-10-03" @default.
- W3190334976 title "Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images" @default.
- W3190334976 cites W1990372984 @default.
- W3190334976 cites W2000803298 @default.
- W3190334976 cites W2034906331 @default.
- W3190334976 cites W2155632266 @default.
- W3190334976 cites W2595964094 @default.
- W3190334976 cites W2606788270 @default.
- W3190334976 cites W2778539913 @default.
- W3190334976 cites W2793461576 @default.
- W3190334976 cites W2800744393 @default.
- W3190334976 cites W2810004461 @default.
- W3190334976 cites W2899101283 @default.
- W3190334976 cites W2940726923 @default.
- W3190334976 cites W2950604226 @default.
- W3190334976 cites W2963659230 @default.
- W3190334976 cites W2963995737 @default.
- W3190334976 cites W2965383240 @default.
- W3190334976 cites W2994256272 @default.
- W3190334976 cites W3007268491 @default.
- W3190334976 cites W3009297390 @default.
- W3190334976 cites W3028752951 @default.
- W3190334976 cites W3040304705 @default.
- W3190334976 cites W3077024029 @default.
- W3190334976 cites W3090286019 @default.
- W3190334976 cites W3093142463 @default.
- W3190334976 cites W3094237813 @default.
- W3190334976 cites W3100449589 @default.
- W3190334976 cites W3102850314 @default.
- W3190334976 cites W3108450508 @default.
- W3190334976 cites W3113573094 @default.
- W3190334976 cites W3116873558 @default.
- W3190334976 cites W3117573952 @default.
- W3190334976 cites W3129042754 @default.
- W3190334976 cites W3133630855 @default.
- W3190334976 cites W3137572916 @default.
- W3190334976 cites W3177272171 @default.
- W3190334976 cites W3183140681 @default.
- W3190334976 doi "https://doi.org/10.3390/rs13163065" @default.
- W3190334976 hasPublicationYear "2021" @default.
- W3190334976 type Work @default.
- W3190334976 sameAs 3190334976 @default.
- W3190334976 citedByCount "54" @default.
- W3190334976 countsByYear W31903349762021 @default.
- W3190334976 countsByYear W31903349762022 @default.
- W3190334976 countsByYear W31903349762023 @default.
- W3190334976 crossrefType "journal-article" @default.
- W3190334976 hasAuthorship W3190334976A5007419647 @default.
- W3190334976 hasAuthorship W3190334976A5019685555 @default.
- W3190334976 hasAuthorship W3190334976A5020880531 @default.
- W3190334976 hasAuthorship W3190334976A5046069241 @default.
- W3190334976 hasAuthorship W3190334976A5081675173 @default.
- W3190334976 hasAuthorship W3190334976A5089962816 @default.
- W3190334976 hasBestOaLocation W31903349761 @default.
- W3190334976 hasConcept C121332964 @default.
- W3190334976 hasConcept C154945302 @default.
- W3190334976 hasConcept C165801399 @default.
- W3190334976 hasConcept C205649164 @default.
- W3190334976 hasConcept C31972630 @default.
- W3190334976 hasConcept C41008148 @default.
- W3190334976 hasConcept C62520636 @default.
- W3190334976 hasConcept C62649853 @default.
- W3190334976 hasConcept C66322947 @default.
- W3190334976 hasConcept C89600930 @default.
- W3190334976 hasConceptScore W3190334976C121332964 @default.
- W3190334976 hasConceptScore W3190334976C154945302 @default.
- W3190334976 hasConceptScore W3190334976C165801399 @default.
- W3190334976 hasConceptScore W3190334976C205649164 @default.
- W3190334976 hasConceptScore W3190334976C31972630 @default.
- W3190334976 hasConceptScore W3190334976C41008148 @default.
- W3190334976 hasConceptScore W3190334976C62520636 @default.
- W3190334976 hasConceptScore W3190334976C62649853 @default.
- W3190334976 hasConceptScore W3190334976C66322947 @default.
- W3190334976 hasConceptScore W3190334976C89600930 @default.
- W3190334976 hasFunder F4320321001 @default.
- W3190334976 hasFunder F4320335777 @default.
- W3190334976 hasIssue "16" @default.
- W3190334976 hasLocation W31903349761 @default.
- W3190334976 hasLocation W31903349762 @default.
- W3190334976 hasLocation W31903349763 @default.
- W3190334976 hasOpenAccess W3190334976 @default.
- W3190334976 hasPrimaryLocation W31903349761 @default.
- W3190334976 hasRelatedWork W1669643531 @default.
- W3190334976 hasRelatedWork W1982826852 @default.
- W3190334976 hasRelatedWork W2005437358 @default.
- W3190334976 hasRelatedWork W2008656436 @default.
- W3190334976 hasRelatedWork W2023558673 @default.
- W3190334976 hasRelatedWork W2110230079 @default.
- W3190334976 hasRelatedWork W2134924024 @default.