Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190351750> ?p ?o ?g. }
- W3190351750 abstract "Motion segmentation is a technique to detect and localize class-agnostic motion in videos. This motion is assumed to be relative to a stationary background and usually originates from objects such as vehicles or humans. When the camera moves, too, frame differencing approaches that do not have to model the stationary background over minutes, hours, or even days are more promising compared to background subtraction methods. In this paper, we propose a Deep Convolutional Neural Network (DCNN) for multi-modal motion segmentation: the current image contributes with appearance information to distinguish between relevant and irrelevant motion and frame differencing captures the temporal information, which is the scene’s motion in-dependent of the camera motion. We fuse this information to receive an effective and efficient approach for robust motion segmentation. The effectiveness is demonstrated using the multi-spectral CDNet-2014 dataset that we re-labeled for motion segmentation. We specifically show that we can detect tiny moving objects significantly better compared to methods based on optical flow." @default.
- W3190351750 created "2021-08-16" @default.
- W3190351750 creator A5007386521 @default.
- W3190351750 creator A5009961099 @default.
- W3190351750 creator A5045128615 @default.
- W3190351750 creator A5079673409 @default.
- W3190351750 creator A5082188790 @default.
- W3190351750 date "2021-06-01" @default.
- W3190351750 modified "2023-10-18" @default.
- W3190351750 title "Deep Fusion of Appearance and Frame Differencing for Motion Segmentation" @default.
- W3190351750 cites W1491152520 @default.
- W3190351750 cites W1873467597 @default.
- W3190351750 cites W1890623278 @default.
- W3190351750 cites W193177998 @default.
- W3190351750 cites W1974318954 @default.
- W3190351750 cites W1988061476 @default.
- W3190351750 cites W2005853603 @default.
- W3190351750 cites W2046752030 @default.
- W3190351750 cites W2053906372 @default.
- W3190351750 cites W2055062656 @default.
- W3190351750 cites W2076756823 @default.
- W3190351750 cites W2102625004 @default.
- W3190351750 cites W2113708607 @default.
- W3190351750 cites W2121274305 @default.
- W3190351750 cites W2127070222 @default.
- W3190351750 cites W2132806726 @default.
- W3190351750 cites W2157565459 @default.
- W3190351750 cites W2170140722 @default.
- W3190351750 cites W2171116555 @default.
- W3190351750 cites W2194775991 @default.
- W3190351750 cites W2211060793 @default.
- W3190351750 cites W2407895138 @default.
- W3190351750 cites W2417256080 @default.
- W3190351750 cites W2467259654 @default.
- W3190351750 cites W2525668722 @default.
- W3190351750 cites W2741620214 @default.
- W3190351750 cites W2751961297 @default.
- W3190351750 cites W2759692151 @default.
- W3190351750 cites W2783946051 @default.
- W3190351750 cites W2890249729 @default.
- W3190351750 cites W2901951655 @default.
- W3190351750 cites W2904631343 @default.
- W3190351750 cites W2928165649 @default.
- W3190351750 cites W2944383542 @default.
- W3190351750 cites W2963290020 @default.
- W3190351750 cites W2963782415 @default.
- W3190351750 cites W2971892177 @default.
- W3190351750 cites W2983488121 @default.
- W3190351750 cites W2987728104 @default.
- W3190351750 cites W3008115128 @default.
- W3190351750 cites W30659672 @default.
- W3190351750 cites W3091791645 @default.
- W3190351750 cites W3093858573 @default.
- W3190351750 cites W3102891736 @default.
- W3190351750 cites W3105220622 @default.
- W3190351750 cites W3152141291 @default.
- W3190351750 cites W3209333838 @default.
- W3190351750 cites W4234399496 @default.
- W3190351750 cites W4300179783 @default.
- W3190351750 doi "https://doi.org/10.1109/cvprw53098.2021.00490" @default.
- W3190351750 hasPublicationYear "2021" @default.
- W3190351750 type Work @default.
- W3190351750 sameAs 3190351750 @default.
- W3190351750 citedByCount "3" @default.
- W3190351750 countsByYear W31903517502022 @default.
- W3190351750 countsByYear W31903517502023 @default.
- W3190351750 crossrefType "proceedings-article" @default.
- W3190351750 hasAuthorship W3190351750A5007386521 @default.
- W3190351750 hasAuthorship W3190351750A5009961099 @default.
- W3190351750 hasAuthorship W3190351750A5045128615 @default.
- W3190351750 hasAuthorship W3190351750A5079673409 @default.
- W3190351750 hasAuthorship W3190351750A5082188790 @default.
- W3190351750 hasConcept C10161872 @default.
- W3190351750 hasConcept C104114177 @default.
- W3190351750 hasConcept C115961682 @default.
- W3190351750 hasConcept C121332964 @default.
- W3190351750 hasConcept C124504099 @default.
- W3190351750 hasConcept C126042441 @default.
- W3190351750 hasConcept C141353440 @default.
- W3190351750 hasConcept C154945302 @default.
- W3190351750 hasConcept C155542232 @default.
- W3190351750 hasConcept C160633673 @default.
- W3190351750 hasConcept C31972630 @default.
- W3190351750 hasConcept C32653426 @default.
- W3190351750 hasConcept C41008148 @default.
- W3190351750 hasConcept C62520636 @default.
- W3190351750 hasConcept C76155785 @default.
- W3190351750 hasConcept C81363708 @default.
- W3190351750 hasConcept C89600930 @default.
- W3190351750 hasConceptScore W3190351750C10161872 @default.
- W3190351750 hasConceptScore W3190351750C104114177 @default.
- W3190351750 hasConceptScore W3190351750C115961682 @default.
- W3190351750 hasConceptScore W3190351750C121332964 @default.
- W3190351750 hasConceptScore W3190351750C124504099 @default.
- W3190351750 hasConceptScore W3190351750C126042441 @default.
- W3190351750 hasConceptScore W3190351750C141353440 @default.
- W3190351750 hasConceptScore W3190351750C154945302 @default.
- W3190351750 hasConceptScore W3190351750C155542232 @default.
- W3190351750 hasConceptScore W3190351750C160633673 @default.
- W3190351750 hasConceptScore W3190351750C31972630 @default.