Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190390211> ?p ?o ?g. }
- W3190390211 endingPage "109970" @default.
- W3190390211 startingPage "109970" @default.
- W3190390211 abstract "Multi-sensor data fusion can provide abundant and complementary fault information. To improve the accuracy and robustness of diagnosis, this paper proposes a novel fault diagnosis method for centrifugal blowers based on multi-level information fusion and hierarchical adaptive convolutional neural network (HACNN). Multi-level information fusion integrates temporal information, feature extraction, feature selection into data fusion. This fusion strategy can acquire comprehensive and representative fault information from multi-sensor signals. The constructed HACNN greatly enhances the feature learning ability of the network and avoids unnecessary computational consumption by adaptive expansion. The effectiveness of the proposed method is evaluated by using datasets from a centrifugal blower test rig. The experimental results show that the testing accuracy and F1-score of the proposed method reach to 98.18%, which is obviously higher than that of CNN, DNN, DBN, BPNN and SVM in corresponding fusion method. It proves that the proposed method has superior diagnosis performance." @default.
- W3190390211 created "2021-08-16" @default.
- W3190390211 creator A5011025844 @default.
- W3190390211 creator A5052597621 @default.
- W3190390211 creator A5059016504 @default.
- W3190390211 creator A5073947102 @default.
- W3190390211 date "2021-11-01" @default.
- W3190390211 modified "2023-10-18" @default.
- W3190390211 title "A novel fault diagnosis method based on multi-level information fusion and hierarchical adaptive convolutional neural networks for centrifugal blowers" @default.
- W3190390211 cites W1978342095 @default.
- W3190390211 cites W2028119131 @default.
- W3190390211 cites W2059518577 @default.
- W3190390211 cites W2263083964 @default.
- W3190390211 cites W2296077894 @default.
- W3190390211 cites W2365322416 @default.
- W3190390211 cites W2517756674 @default.
- W3190390211 cites W2518937691 @default.
- W3190390211 cites W2563202971 @default.
- W3190390211 cites W2593479727 @default.
- W3190390211 cites W2601590138 @default.
- W3190390211 cites W2734669076 @default.
- W3190390211 cites W2744604411 @default.
- W3190390211 cites W2744790985 @default.
- W3190390211 cites W2768753204 @default.
- W3190390211 cites W2770344288 @default.
- W3190390211 cites W2783074568 @default.
- W3190390211 cites W2804964124 @default.
- W3190390211 cites W2808496542 @default.
- W3190390211 cites W2810292802 @default.
- W3190390211 cites W2889405224 @default.
- W3190390211 cites W2896727370 @default.
- W3190390211 cites W2897868901 @default.
- W3190390211 cites W2906256948 @default.
- W3190390211 cites W2914345141 @default.
- W3190390211 cites W2919115771 @default.
- W3190390211 cites W2922246408 @default.
- W3190390211 cites W2932067728 @default.
- W3190390211 cites W2945785843 @default.
- W3190390211 cites W2946208493 @default.
- W3190390211 cites W2956467153 @default.
- W3190390211 cites W2961876792 @default.
- W3190390211 cites W2967625104 @default.
- W3190390211 cites W2974982900 @default.
- W3190390211 cites W2975932043 @default.
- W3190390211 cites W2987170822 @default.
- W3190390211 cites W2989818023 @default.
- W3190390211 cites W2995201943 @default.
- W3190390211 cites W2998830408 @default.
- W3190390211 cites W3034650994 @default.
- W3190390211 cites W3035789953 @default.
- W3190390211 cites W3038041534 @default.
- W3190390211 doi "https://doi.org/10.1016/j.measurement.2021.109970" @default.
- W3190390211 hasPublicationYear "2021" @default.
- W3190390211 type Work @default.
- W3190390211 sameAs 3190390211 @default.
- W3190390211 citedByCount "14" @default.
- W3190390211 countsByYear W31903902112022 @default.
- W3190390211 countsByYear W31903902112023 @default.
- W3190390211 crossrefType "journal-article" @default.
- W3190390211 hasAuthorship W3190390211A5011025844 @default.
- W3190390211 hasAuthorship W3190390211A5052597621 @default.
- W3190390211 hasAuthorship W3190390211A5059016504 @default.
- W3190390211 hasAuthorship W3190390211A5073947102 @default.
- W3190390211 hasConcept C104317684 @default.
- W3190390211 hasConcept C12267149 @default.
- W3190390211 hasConcept C124101348 @default.
- W3190390211 hasConcept C127313418 @default.
- W3190390211 hasConcept C127413603 @default.
- W3190390211 hasConcept C138885662 @default.
- W3190390211 hasConcept C148483581 @default.
- W3190390211 hasConcept C153180895 @default.
- W3190390211 hasConcept C154945302 @default.
- W3190390211 hasConcept C158525013 @default.
- W3190390211 hasConcept C165205528 @default.
- W3190390211 hasConcept C175551986 @default.
- W3190390211 hasConcept C185592680 @default.
- W3190390211 hasConcept C2776401178 @default.
- W3190390211 hasConcept C2982962833 @default.
- W3190390211 hasConcept C33954974 @default.
- W3190390211 hasConcept C41008148 @default.
- W3190390211 hasConcept C41895202 @default.
- W3190390211 hasConcept C50644808 @default.
- W3190390211 hasConcept C52622490 @default.
- W3190390211 hasConcept C55493867 @default.
- W3190390211 hasConcept C63479239 @default.
- W3190390211 hasConcept C81363708 @default.
- W3190390211 hasConceptScore W3190390211C104317684 @default.
- W3190390211 hasConceptScore W3190390211C12267149 @default.
- W3190390211 hasConceptScore W3190390211C124101348 @default.
- W3190390211 hasConceptScore W3190390211C127313418 @default.
- W3190390211 hasConceptScore W3190390211C127413603 @default.
- W3190390211 hasConceptScore W3190390211C138885662 @default.
- W3190390211 hasConceptScore W3190390211C148483581 @default.
- W3190390211 hasConceptScore W3190390211C153180895 @default.
- W3190390211 hasConceptScore W3190390211C154945302 @default.
- W3190390211 hasConceptScore W3190390211C158525013 @default.
- W3190390211 hasConceptScore W3190390211C165205528 @default.
- W3190390211 hasConceptScore W3190390211C175551986 @default.