Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190488529> ?p ?o ?g. }
- W3190488529 endingPage "4359" @default.
- W3190488529 startingPage "4345" @default.
- W3190488529 abstract "High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available." @default.
- W3190488529 created "2021-08-16" @default.
- W3190488529 creator A5000517454 @default.
- W3190488529 creator A5005312066 @default.
- W3190488529 creator A5009283925 @default.
- W3190488529 creator A5011443765 @default.
- W3190488529 creator A5017458178 @default.
- W3190488529 creator A5029041995 @default.
- W3190488529 creator A5048051288 @default.
- W3190488529 creator A5057676699 @default.
- W3190488529 creator A5067077141 @default.
- W3190488529 creator A5069170116 @default.
- W3190488529 creator A5087315441 @default.
- W3190488529 date "2021-01-01" @default.
- W3190488529 modified "2023-09-24" @default.
- W3190488529 title "A primer on machine learning techniques for genomic applications" @default.
- W3190488529 cites W1505191356 @default.
- W3190488529 cites W1577822803 @default.
- W3190488529 cites W1599740911 @default.
- W3190488529 cites W1815093033 @default.
- W3190488529 cites W1987888496 @default.
- W3190488529 cites W2017337590 @default.
- W3190488529 cites W2018838463 @default.
- W3190488529 cites W2041282815 @default.
- W3190488529 cites W2051380427 @default.
- W3190488529 cites W2102450275 @default.
- W3190488529 cites W2103496339 @default.
- W3190488529 cites W2103903744 @default.
- W3190488529 cites W2108075537 @default.
- W3190488529 cites W2110103300 @default.
- W3190488529 cites W2112124032 @default.
- W3190488529 cites W2133856765 @default.
- W3190488529 cites W2138690306 @default.
- W3190488529 cites W2151350595 @default.
- W3190488529 cites W2152885278 @default.
- W3190488529 cites W2156665896 @default.
- W3190488529 cites W2156677646 @default.
- W3190488529 cites W2163891305 @default.
- W3190488529 cites W2171978781 @default.
- W3190488529 cites W2317495605 @default.
- W3190488529 cites W2476889391 @default.
- W3190488529 cites W2590034108 @default.
- W3190488529 cites W2616083932 @default.
- W3190488529 cites W2741564801 @default.
- W3190488529 cites W2746791238 @default.
- W3190488529 cites W2757384990 @default.
- W3190488529 cites W2768723560 @default.
- W3190488529 cites W2785059970 @default.
- W3190488529 cites W2790671385 @default.
- W3190488529 cites W2791732570 @default.
- W3190488529 cites W2791759354 @default.
- W3190488529 cites W2795381779 @default.
- W3190488529 cites W2802441085 @default.
- W3190488529 cites W2807194798 @default.
- W3190488529 cites W2884682213 @default.
- W3190488529 cites W2888644986 @default.
- W3190488529 cites W2903801932 @default.
- W3190488529 cites W2911964244 @default.
- W3190488529 cites W2912369228 @default.
- W3190488529 cites W2935098703 @default.
- W3190488529 cites W2935513430 @default.
- W3190488529 cites W2936250992 @default.
- W3190488529 cites W2940147470 @default.
- W3190488529 cites W2943939637 @default.
- W3190488529 cites W2955621471 @default.
- W3190488529 cites W2957105906 @default.
- W3190488529 cites W2963276645 @default.
- W3190488529 cites W2968757707 @default.
- W3190488529 cites W2969701269 @default.
- W3190488529 cites W2986448893 @default.
- W3190488529 cites W2996768831 @default.
- W3190488529 cites W2997991046 @default.
- W3190488529 cites W3001485171 @default.
- W3190488529 cites W3017019970 @default.
- W3190488529 cites W3043718050 @default.
- W3190488529 cites W3044522460 @default.
- W3190488529 cites W3082157162 @default.
- W3190488529 cites W3083874242 @default.
- W3190488529 cites W3092430355 @default.
- W3190488529 cites W3097763558 @default.
- W3190488529 cites W3106488704 @default.
- W3190488529 cites W3111173134 @default.
- W3190488529 cites W3117445042 @default.
- W3190488529 cites W3118724893 @default.
- W3190488529 doi "https://doi.org/10.1016/j.csbj.2021.07.021" @default.
- W3190488529 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8365460" @default.
- W3190488529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34429852" @default.
- W3190488529 hasPublicationYear "2021" @default.
- W3190488529 type Work @default.
- W3190488529 sameAs 3190488529 @default.
- W3190488529 citedByCount "3" @default.
- W3190488529 countsByYear W31904885292022 @default.
- W3190488529 countsByYear W31904885292023 @default.
- W3190488529 crossrefType "journal-article" @default.
- W3190488529 hasAuthorship W3190488529A5000517454 @default.
- W3190488529 hasAuthorship W3190488529A5005312066 @default.
- W3190488529 hasAuthorship W3190488529A5009283925 @default.
- W3190488529 hasAuthorship W3190488529A5011443765 @default.