Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190490989> ?p ?o ?g. }
- W3190490989 endingPage "1328" @default.
- W3190490989 startingPage "1318" @default.
- W3190490989 abstract "This study presents a novel approach to automatically perform instant phenotypic assessment of red blood cell (RBC) storage lesion in phase images obtained by digital holographic microscopy. The proposed model combines a generative adversarial network (GAN) with marker-controlled watershed segmentation scheme. The GAN model performed RBC segmentations and classifications to develop ageing markers, and the watershed segmentation was used to completely separate overlapping RBCs. Our approach achieved good segmentation and classification accuracy with a Dice's coefficient of 0.94 at a high throughput rate of about 152 cells per second. These results were compared with other deep neural network architectures. Moreover, our image-based deep learning models recognized the morphological changes that occur in RBCs during storage. Our deep learning-based classification results were in good agreement with previous findings on the changes in RBC markers (dominant shapes) affected by storage duration. We believe that our image-based deep learning models can be useful for automated assessment of RBC quality, storage lesions for safe transfusions, and diagnosis of RBC-related diseases." @default.
- W3190490989 created "2021-08-16" @default.
- W3190490989 creator A5001090654 @default.
- W3190490989 creator A5023863369 @default.
- W3190490989 creator A5040682696 @default.
- W3190490989 creator A5088864309 @default.
- W3190490989 creator A5090265161 @default.
- W3190490989 date "2022-03-01" @default.
- W3190490989 modified "2023-10-18" @default.
- W3190490989 title "Deep Learning-Based Phenotypic Assessment of Red Cell Storage Lesions for Safe Transfusions" @default.
- W3190490989 cites W1582012726 @default.
- W3190490989 cites W1974667733 @default.
- W3190490989 cites W1987869189 @default.
- W3190490989 cites W1989183603 @default.
- W3190490989 cites W2003123352 @default.
- W3190490989 cites W2008840310 @default.
- W3190490989 cites W2012910990 @default.
- W3190490989 cites W2015526235 @default.
- W3190490989 cites W2050787878 @default.
- W3190490989 cites W2076814189 @default.
- W3190490989 cites W2107921622 @default.
- W3190490989 cites W2110218375 @default.
- W3190490989 cites W2110435659 @default.
- W3190490989 cites W2113401723 @default.
- W3190490989 cites W2113942106 @default.
- W3190490989 cites W2114294967 @default.
- W3190490989 cites W2130987293 @default.
- W3190490989 cites W2148743296 @default.
- W3190490989 cites W2156075397 @default.
- W3190490989 cites W2161889928 @default.
- W3190490989 cites W2163370365 @default.
- W3190490989 cites W2194775991 @default.
- W3190490989 cites W2221784882 @default.
- W3190490989 cites W2395611524 @default.
- W3190490989 cites W2523325624 @default.
- W3190490989 cites W2533800772 @default.
- W3190490989 cites W2547049845 @default.
- W3190490989 cites W2563014845 @default.
- W3190490989 cites W2584061926 @default.
- W3190490989 cites W2592905743 @default.
- W3190490989 cites W2595636951 @default.
- W3190490989 cites W2735429996 @default.
- W3190490989 cites W2738232076 @default.
- W3190490989 cites W2750925197 @default.
- W3190490989 cites W2755015298 @default.
- W3190490989 cites W2774320778 @default.
- W3190490989 cites W2807045376 @default.
- W3190490989 cites W2915813538 @default.
- W3190490989 cites W2936139108 @default.
- W3190490989 cites W2962793481 @default.
- W3190490989 cites W2962804068 @default.
- W3190490989 cites W2963073614 @default.
- W3190490989 cites W2963420272 @default.
- W3190490989 cites W3005707225 @default.
- W3190490989 cites W3031867929 @default.
- W3190490989 cites W3048236671 @default.
- W3190490989 cites W3080569962 @default.
- W3190490989 cites W3088226460 @default.
- W3190490989 cites W3101639073 @default.
- W3190490989 doi "https://doi.org/10.1109/jbhi.2021.3104650" @default.
- W3190490989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34388103" @default.
- W3190490989 hasPublicationYear "2022" @default.
- W3190490989 type Work @default.
- W3190490989 sameAs 3190490989 @default.
- W3190490989 citedByCount "6" @default.
- W3190490989 countsByYear W31904909892022 @default.
- W3190490989 countsByYear W31904909892023 @default.
- W3190490989 crossrefType "journal-article" @default.
- W3190490989 hasAuthorship W3190490989A5001090654 @default.
- W3190490989 hasAuthorship W3190490989A5023863369 @default.
- W3190490989 hasAuthorship W3190490989A5040682696 @default.
- W3190490989 hasAuthorship W3190490989A5088864309 @default.
- W3190490989 hasAuthorship W3190490989A5090265161 @default.
- W3190490989 hasConcept C108583219 @default.
- W3190490989 hasConcept C124504099 @default.
- W3190490989 hasConcept C153180895 @default.
- W3190490989 hasConcept C154945302 @default.
- W3190490989 hasConcept C163892561 @default.
- W3190490989 hasConcept C31972630 @default.
- W3190490989 hasConcept C41008148 @default.
- W3190490989 hasConcept C50644808 @default.
- W3190490989 hasConcept C89600930 @default.
- W3190490989 hasConceptScore W3190490989C108583219 @default.
- W3190490989 hasConceptScore W3190490989C124504099 @default.
- W3190490989 hasConceptScore W3190490989C153180895 @default.
- W3190490989 hasConceptScore W3190490989C154945302 @default.
- W3190490989 hasConceptScore W3190490989C163892561 @default.
- W3190490989 hasConceptScore W3190490989C31972630 @default.
- W3190490989 hasConceptScore W3190490989C41008148 @default.
- W3190490989 hasConceptScore W3190490989C50644808 @default.
- W3190490989 hasConceptScore W3190490989C89600930 @default.
- W3190490989 hasFunder F4320322120 @default.
- W3190490989 hasFunder F4320328359 @default.
- W3190490989 hasIssue "3" @default.
- W3190490989 hasLocation W31904909891 @default.
- W3190490989 hasLocation W31904909892 @default.
- W3190490989 hasOpenAccess W3190490989 @default.
- W3190490989 hasPrimaryLocation W31904909891 @default.