Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190497043> ?p ?o ?g. }
- W3190497043 endingPage "109949" @default.
- W3190497043 startingPage "109949" @default.
- W3190497043 abstract "Various time–frequency analysis based tacholess methods have been developed for fault detection under variable rotational speed conditions. However, most of them rely on order tracking (OT) which must transform a vibration signal from time domain to angular domain. In this paper, an order tracking-free method based on adaptive chirp mode decomposition (ACMD) is proposed to break through the boundedness. As pre-processing, synchroextracting transform (SET) is employed to calculate time–frequency distribution (TFD) of the raw signal with high concentration energy. Afterwards, multiple instantaneous frequencies (IFs) are simultaneously extracted by ACMD, which decomposes multimode non-stationary signal with an adaptive bandwidth updating rule. Finally, select the relevant IFs to calculate the fault characteristic coefficient (FCC) and then the fault state of bearing can be identified. Numerical simulation and experimental investigations with varying speeds verify the effectiveness of the new method. The results of comparison tests further to demonstrate the proposed method is high-efficiency." @default.
- W3190497043 created "2021-08-16" @default.
- W3190497043 creator A5003461093 @default.
- W3190497043 creator A5031562273 @default.
- W3190497043 creator A5040114362 @default.
- W3190497043 creator A5042682579 @default.
- W3190497043 creator A5047539283 @default.
- W3190497043 creator A5091173441 @default.
- W3190497043 date "2021-11-01" @default.
- W3190497043 modified "2023-10-16" @default.
- W3190497043 title "An order tracking-free method for variable speed fault diagnosis based on adaptive chirp mode decomposition" @default.
- W3190497043 cites W1982500096 @default.
- W3190497043 cites W2004436946 @default.
- W3190497043 cites W2007221293 @default.
- W3190497043 cites W2013108472 @default.
- W3190497043 cites W2019120773 @default.
- W3190497043 cites W2020351623 @default.
- W3190497043 cites W2066980082 @default.
- W3190497043 cites W2088202114 @default.
- W3190497043 cites W2090218979 @default.
- W3190497043 cites W2154087768 @default.
- W3190497043 cites W2334008905 @default.
- W3190497043 cites W2584551907 @default.
- W3190497043 cites W2609688418 @default.
- W3190497043 cites W2736989556 @default.
- W3190497043 cites W2742644795 @default.
- W3190497043 cites W2754962589 @default.
- W3190497043 cites W2765616930 @default.
- W3190497043 cites W2778801251 @default.
- W3190497043 cites W2883652074 @default.
- W3190497043 cites W2896126844 @default.
- W3190497043 cites W2896476637 @default.
- W3190497043 cites W2900367617 @default.
- W3190497043 cites W2912899860 @default.
- W3190497043 cites W2912960306 @default.
- W3190497043 cites W2921180224 @default.
- W3190497043 cites W2940935128 @default.
- W3190497043 cites W2965331387 @default.
- W3190497043 cites W2996237613 @default.
- W3190497043 cites W2996509991 @default.
- W3190497043 cites W3005789239 @default.
- W3190497043 cites W3011878669 @default.
- W3190497043 cites W3015479346 @default.
- W3190497043 cites W3109019544 @default.
- W3190497043 cites W3130615170 @default.
- W3190497043 doi "https://doi.org/10.1016/j.measurement.2021.109949" @default.
- W3190497043 hasPublicationYear "2021" @default.
- W3190497043 type Work @default.
- W3190497043 sameAs 3190497043 @default.
- W3190497043 citedByCount "4" @default.
- W3190497043 countsByYear W31904970432022 @default.
- W3190497043 countsByYear W31904970432023 @default.
- W3190497043 crossrefType "journal-article" @default.
- W3190497043 hasAuthorship W3190497043A5003461093 @default.
- W3190497043 hasAuthorship W3190497043A5031562273 @default.
- W3190497043 hasAuthorship W3190497043A5040114362 @default.
- W3190497043 hasAuthorship W3190497043A5042682579 @default.
- W3190497043 hasAuthorship W3190497043A5047539283 @default.
- W3190497043 hasAuthorship W3190497043A5091173441 @default.
- W3190497043 hasConcept C103824480 @default.
- W3190497043 hasConcept C104267543 @default.
- W3190497043 hasConcept C105795698 @default.
- W3190497043 hasConcept C11413529 @default.
- W3190497043 hasConcept C120665830 @default.
- W3190497043 hasConcept C121332964 @default.
- W3190497043 hasConcept C127313418 @default.
- W3190497043 hasConcept C127413603 @default.
- W3190497043 hasConcept C132794960 @default.
- W3190497043 hasConcept C134306372 @default.
- W3190497043 hasConcept C137798554 @default.
- W3190497043 hasConcept C142433447 @default.
- W3190497043 hasConcept C154945302 @default.
- W3190497043 hasConcept C165205528 @default.
- W3190497043 hasConcept C175551986 @default.
- W3190497043 hasConcept C186370098 @default.
- W3190497043 hasConcept C19118579 @default.
- W3190497043 hasConcept C198394728 @default.
- W3190497043 hasConcept C199360897 @default.
- W3190497043 hasConcept C24326235 @default.
- W3190497043 hasConcept C24890656 @default.
- W3190497043 hasConcept C25570617 @default.
- W3190497043 hasConcept C2775924081 @default.
- W3190497043 hasConcept C2779843651 @default.
- W3190497043 hasConcept C31972630 @default.
- W3190497043 hasConcept C33923547 @default.
- W3190497043 hasConcept C41008148 @default.
- W3190497043 hasConcept C47446073 @default.
- W3190497043 hasConcept C520434653 @default.
- W3190497043 hasConcept C554190296 @default.
- W3190497043 hasConcept C76155785 @default.
- W3190497043 hasConceptScore W3190497043C103824480 @default.
- W3190497043 hasConceptScore W3190497043C104267543 @default.
- W3190497043 hasConceptScore W3190497043C105795698 @default.
- W3190497043 hasConceptScore W3190497043C11413529 @default.
- W3190497043 hasConceptScore W3190497043C120665830 @default.
- W3190497043 hasConceptScore W3190497043C121332964 @default.
- W3190497043 hasConceptScore W3190497043C127313418 @default.
- W3190497043 hasConceptScore W3190497043C127413603 @default.