Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190677313> ?p ?o ?g. }
- W3190677313 endingPage "100649" @default.
- W3190677313 startingPage "100649" @default.
- W3190677313 abstract "Groundwater-level prediction has a significant impact on sustainable water-resources management. In this research, the impact of climate change on groundwater level on Shabestar Plain, Iran, was investigated. First, through General Circulation Models (GCM), temperature and precipitation values were projected under future scenarios of Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP8.5). In the next phase, groundwater-level variations in the Shabestar Plain through the Autoregressive Integrated Moving Average (ARIMA) statistical model and Artificial Neural Network (ANN) and Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX) soft-computing techniques were evaluated. The climate projections showed that the temperature would increase while precipitation would decrease in the future period (2020–2050). Comparing performance criteria among statistical and soft-computing models in simulation groundwater levels demonstrated that the Wavelet-NARX has superior performance compared to the others. Prediction of future groundwater levels showed that the average groundwater levels would decline in a future period (2020–2025) with 1.2 m, 2.2 m, and 3.0 m, under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. These results emphasize an urgent need for dynamic management for the conservation of water resources in the study area." @default.
- W3190677313 created "2021-08-16" @default.
- W3190677313 creator A5003055299 @default.
- W3190677313 creator A5025070943 @default.
- W3190677313 creator A5047303465 @default.
- W3190677313 date "2021-11-01" @default.
- W3190677313 modified "2023-09-25" @default.
- W3190677313 title "Response of the Shabestar Plain aquifer to climate-change scenarios through statistical and hybrid soft computing techniques" @default.
- W3190677313 cites W1848154150 @default.
- W3190677313 cites W1975994995 @default.
- W3190677313 cites W1986143844 @default.
- W3190677313 cites W1994637830 @default.
- W3190677313 cites W2005309788 @default.
- W3190677313 cites W2012340228 @default.
- W3190677313 cites W2014685742 @default.
- W3190677313 cites W2015999356 @default.
- W3190677313 cites W2028573940 @default.
- W3190677313 cites W2032476909 @default.
- W3190677313 cites W2039231690 @default.
- W3190677313 cites W2042980138 @default.
- W3190677313 cites W2046785557 @default.
- W3190677313 cites W2046794274 @default.
- W3190677313 cites W2057289385 @default.
- W3190677313 cites W2062087947 @default.
- W3190677313 cites W2063347054 @default.
- W3190677313 cites W2081268352 @default.
- W3190677313 cites W2085089875 @default.
- W3190677313 cites W2097580026 @default.
- W3190677313 cites W2114844376 @default.
- W3190677313 cites W2138763184 @default.
- W3190677313 cites W2165313910 @default.
- W3190677313 cites W2216845620 @default.
- W3190677313 cites W2291560185 @default.
- W3190677313 cites W2311533087 @default.
- W3190677313 cites W2490869500 @default.
- W3190677313 cites W2538649348 @default.
- W3190677313 cites W2560291307 @default.
- W3190677313 cites W2587579504 @default.
- W3190677313 cites W2592559322 @default.
- W3190677313 cites W2731107082 @default.
- W3190677313 cites W2743543156 @default.
- W3190677313 cites W2750213292 @default.
- W3190677313 cites W2771878413 @default.
- W3190677313 cites W2791646042 @default.
- W3190677313 cites W2792723426 @default.
- W3190677313 cites W2801349916 @default.
- W3190677313 cites W2810938966 @default.
- W3190677313 cites W2883973303 @default.
- W3190677313 cites W2898424009 @default.
- W3190677313 cites W2899986803 @default.
- W3190677313 cites W2905061342 @default.
- W3190677313 cites W2907891425 @default.
- W3190677313 cites W2909477300 @default.
- W3190677313 cites W2914588923 @default.
- W3190677313 cites W2917394766 @default.
- W3190677313 cites W2944008221 @default.
- W3190677313 cites W2971535064 @default.
- W3190677313 cites W2972287889 @default.
- W3190677313 cites W2989908608 @default.
- W3190677313 cites W2991385696 @default.
- W3190677313 cites W3003820510 @default.
- W3190677313 cites W3017323153 @default.
- W3190677313 cites W3024980045 @default.
- W3190677313 cites W3125916159 @default.
- W3190677313 doi "https://doi.org/10.1016/j.gsd.2021.100649" @default.
- W3190677313 hasPublicationYear "2021" @default.
- W3190677313 type Work @default.
- W3190677313 sameAs 3190677313 @default.
- W3190677313 citedByCount "11" @default.
- W3190677313 countsByYear W31906773132022 @default.
- W3190677313 countsByYear W31906773132023 @default.
- W3190677313 crossrefType "journal-article" @default.
- W3190677313 hasAuthorship W3190677313A5003055299 @default.
- W3190677313 hasAuthorship W3190677313A5025070943 @default.
- W3190677313 hasAuthorship W3190677313A5047303465 @default.
- W3190677313 hasConcept C107054158 @default.
- W3190677313 hasConcept C111368507 @default.
- W3190677313 hasConcept C115343472 @default.
- W3190677313 hasConcept C119857082 @default.
- W3190677313 hasConcept C127313418 @default.
- W3190677313 hasConcept C132651083 @default.
- W3190677313 hasConcept C149782125 @default.
- W3190677313 hasConcept C151406439 @default.
- W3190677313 hasConcept C153294291 @default.
- W3190677313 hasConcept C153823671 @default.
- W3190677313 hasConcept C159877910 @default.
- W3190677313 hasConcept C187320778 @default.
- W3190677313 hasConcept C18903297 @default.
- W3190677313 hasConcept C205649164 @default.
- W3190677313 hasConcept C24338571 @default.
- W3190677313 hasConcept C2993807900 @default.
- W3190677313 hasConcept C33923547 @default.
- W3190677313 hasConcept C39432304 @default.
- W3190677313 hasConcept C41008148 @default.
- W3190677313 hasConcept C42536954 @default.
- W3190677313 hasConcept C49204034 @default.
- W3190677313 hasConcept C75622301 @default.
- W3190677313 hasConcept C76177295 @default.