Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190707446> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3190707446 endingPage "11" @default.
- W3190707446 startingPage "1" @default.
- W3190707446 abstract "Electroencephalogram (EEG) signals are essential in brain-computer interface systems. Nowadays, these signals are employed in various medical applications. In the past few years, EEG signals gain more attention in security systems to identify users, as these signals are unique for each individual. The current study explores deep learning frameworks for EEG-based user identification. Data from 107 users were considered for the study, which is acquired using 64 channels. Several experimental tests are performed over both convolutional neural network (CNN) and recurrent neural networks (RNN) using a 10-fold cross-validation process to check system effectiveness. In CNN, 1-D Convolutional layer is employed for the processing of EEG signals. In RNN, LSTM and GRU are used to check system accuracy. For performance measure various metrices were considered such as accuracy, precision, recall and kappa score. Acquired results suggest that gated recurrent unit (GRU) outperforms other models in terms of accuracy and complexity both. GRU model has 91.2% accuracy and has three layers only, which reduces the model’s complexity. The training cost is also decreasing due to the low complexity of the model." @default.
- W3190707446 created "2021-08-16" @default.
- W3190707446 creator A5029353574 @default.
- W3190707446 creator A5074175111 @default.
- W3190707446 date "2021-07-27" @default.
- W3190707446 modified "2023-10-16" @default.
- W3190707446 title "Experimental analysis for classification of EEG signals using deep learning framework for optimizing accuracy and cost" @default.
- W3190707446 cites W2064675550 @default.
- W3190707446 cites W2157331557 @default.
- W3190707446 cites W2783178867 @default.
- W3190707446 cites W2789173070 @default.
- W3190707446 cites W2834889150 @default.
- W3190707446 cites W2896120927 @default.
- W3190707446 cites W2911312349 @default.
- W3190707446 cites W2962954310 @default.
- W3190707446 cites W2964252002 @default.
- W3190707446 cites W2986586463 @default.
- W3190707446 cites W3035442710 @default.
- W3190707446 cites W3035471470 @default.
- W3190707446 cites W4293107615 @default.
- W3190707446 doi "https://doi.org/10.3233/jifs-202490" @default.
- W3190707446 hasPublicationYear "2021" @default.
- W3190707446 type Work @default.
- W3190707446 sameAs 3190707446 @default.
- W3190707446 citedByCount "0" @default.
- W3190707446 crossrefType "journal-article" @default.
- W3190707446 hasAuthorship W3190707446A5029353574 @default.
- W3190707446 hasAuthorship W3190707446A5074175111 @default.
- W3190707446 hasConcept C100660578 @default.
- W3190707446 hasConcept C108583219 @default.
- W3190707446 hasConcept C111919701 @default.
- W3190707446 hasConcept C118552586 @default.
- W3190707446 hasConcept C119857082 @default.
- W3190707446 hasConcept C138885662 @default.
- W3190707446 hasConcept C147168706 @default.
- W3190707446 hasConcept C153180895 @default.
- W3190707446 hasConcept C154945302 @default.
- W3190707446 hasConcept C15744967 @default.
- W3190707446 hasConcept C28490314 @default.
- W3190707446 hasConcept C41008148 @default.
- W3190707446 hasConcept C41895202 @default.
- W3190707446 hasConcept C50644808 @default.
- W3190707446 hasConcept C522805319 @default.
- W3190707446 hasConcept C81363708 @default.
- W3190707446 hasConcept C81669768 @default.
- W3190707446 hasConcept C98045186 @default.
- W3190707446 hasConceptScore W3190707446C100660578 @default.
- W3190707446 hasConceptScore W3190707446C108583219 @default.
- W3190707446 hasConceptScore W3190707446C111919701 @default.
- W3190707446 hasConceptScore W3190707446C118552586 @default.
- W3190707446 hasConceptScore W3190707446C119857082 @default.
- W3190707446 hasConceptScore W3190707446C138885662 @default.
- W3190707446 hasConceptScore W3190707446C147168706 @default.
- W3190707446 hasConceptScore W3190707446C153180895 @default.
- W3190707446 hasConceptScore W3190707446C154945302 @default.
- W3190707446 hasConceptScore W3190707446C15744967 @default.
- W3190707446 hasConceptScore W3190707446C28490314 @default.
- W3190707446 hasConceptScore W3190707446C41008148 @default.
- W3190707446 hasConceptScore W3190707446C41895202 @default.
- W3190707446 hasConceptScore W3190707446C50644808 @default.
- W3190707446 hasConceptScore W3190707446C522805319 @default.
- W3190707446 hasConceptScore W3190707446C81363708 @default.
- W3190707446 hasConceptScore W3190707446C81669768 @default.
- W3190707446 hasConceptScore W3190707446C98045186 @default.
- W3190707446 hasLocation W31907074461 @default.
- W3190707446 hasOpenAccess W3190707446 @default.
- W3190707446 hasPrimaryLocation W31907074461 @default.
- W3190707446 hasRelatedWork W2337926734 @default.
- W3190707446 hasRelatedWork W2732542196 @default.
- W3190707446 hasRelatedWork W2738221750 @default.
- W3190707446 hasRelatedWork W2793022090 @default.
- W3190707446 hasRelatedWork W3156786002 @default.
- W3190707446 hasRelatedWork W3166467183 @default.
- W3190707446 hasRelatedWork W4311257506 @default.
- W3190707446 hasRelatedWork W4320802194 @default.
- W3190707446 hasRelatedWork W4366224123 @default.
- W3190707446 hasRelatedWork W564581980 @default.
- W3190707446 isParatext "false" @default.
- W3190707446 isRetracted "false" @default.
- W3190707446 magId "3190707446" @default.
- W3190707446 workType "article" @default.