Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190806616> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3190806616 endingPage "012019" @default.
- W3190806616 startingPage "012019" @default.
- W3190806616 abstract "Abstract Crowd density estimation model is a typical concept which compute the counting of the people in the crowded image. There are many of research papers are written in this area to solve the different kind of real world problems. This paper shows the state of art and different types of framework proposed on density estimation and crowd counting techniques. The population of our country increases year by year, so the purpose of this paper is to explore different techniques available for crowd density estimation. There are lot of applications existing based on this technique like retail system, surveillance system etc., where the foot traffic is very vital in retail system to organize merchandise in aisles, optimize store layout, understand peak times and potentially even protect against theft. In surveillance system, this is mainly used for security purpose. In this, the researcher captures the crowd using the camera and the technique of counting the crowd which is divided into two parts unsupervised and supervised learning. These techniques are further divided into parts which is shown in the paper. The survey presents the different types of datasets of the crowded image which is useful for simulating the people counting in the crowded scenes. In detection based approach, this technique counts the people with the help of face detection technique. In this researchers face the problems of count the people in crowded scenes and also face the problem in surveillance applications. The cluster based approach data works well on the scattered crowd. This method needs image frames; it does not work on still images. In regression approach the model trained is subject to the point of view map. In the model were to be used in a different scene of a changed perspective map, it will have many inaccuracies in its result. The current research work intends to provide a general idea on crowd density estimation and counting approaches employed in visual surveillance in the perception of the study of computer vision. The analysis of review categorizes and frameworks quite a lot approximation related to crowd density and calculating approaches which are beneficial in providing the analysis related to the crowd places of interest." @default.
- W3190806616 created "2021-08-16" @default.
- W3190806616 creator A5012025891 @default.
- W3190806616 creator A5029115380 @default.
- W3190806616 creator A5034218707 @default.
- W3190806616 creator A5037828296 @default.
- W3190806616 creator A5049355121 @default.
- W3190806616 date "2021-06-01" @default.
- W3190806616 modified "2023-09-27" @default.
- W3190806616 title "Scientific Exploration for Density Estimation and Crowd Counting of Crowded Scene" @default.
- W3190806616 cites W2020463883 @default.
- W3190806616 cites W2028292253 @default.
- W3190806616 cites W2058907003 @default.
- W3190806616 cites W2158340226 @default.
- W3190806616 cites W2225382942 @default.
- W3190806616 cites W2266815376 @default.
- W3190806616 cites W2316109659 @default.
- W3190806616 cites W2340117178 @default.
- W3190806616 cites W2416514825 @default.
- W3190806616 cites W2503288456 @default.
- W3190806616 cites W2559351225 @default.
- W3190806616 cites W2577681026 @default.
- W3190806616 cites W2625550794 @default.
- W3190806616 cites W2674041596 @default.
- W3190806616 cites W2749406949 @default.
- W3190806616 cites W2808519136 @default.
- W3190806616 cites W2809110026 @default.
- W3190806616 cites W2899438351 @default.
- W3190806616 cites W2964307651 @default.
- W3190806616 cites W2966893608 @default.
- W3190806616 doi "https://doi.org/10.1088/1742-6596/1947/1/012019" @default.
- W3190806616 hasPublicationYear "2021" @default.
- W3190806616 type Work @default.
- W3190806616 sameAs 3190806616 @default.
- W3190806616 citedByCount "0" @default.
- W3190806616 crossrefType "journal-article" @default.
- W3190806616 hasAuthorship W3190806616A5012025891 @default.
- W3190806616 hasAuthorship W3190806616A5029115380 @default.
- W3190806616 hasAuthorship W3190806616A5034218707 @default.
- W3190806616 hasAuthorship W3190806616A5037828296 @default.
- W3190806616 hasAuthorship W3190806616A5049355121 @default.
- W3190806616 hasBestOaLocation W31908066161 @default.
- W3190806616 hasConcept C115961682 @default.
- W3190806616 hasConcept C144024400 @default.
- W3190806616 hasConcept C149923435 @default.
- W3190806616 hasConcept C154945302 @default.
- W3190806616 hasConcept C2779304628 @default.
- W3190806616 hasConcept C2908647359 @default.
- W3190806616 hasConcept C31972630 @default.
- W3190806616 hasConcept C36289849 @default.
- W3190806616 hasConcept C41008148 @default.
- W3190806616 hasConceptScore W3190806616C115961682 @default.
- W3190806616 hasConceptScore W3190806616C144024400 @default.
- W3190806616 hasConceptScore W3190806616C149923435 @default.
- W3190806616 hasConceptScore W3190806616C154945302 @default.
- W3190806616 hasConceptScore W3190806616C2779304628 @default.
- W3190806616 hasConceptScore W3190806616C2908647359 @default.
- W3190806616 hasConceptScore W3190806616C31972630 @default.
- W3190806616 hasConceptScore W3190806616C36289849 @default.
- W3190806616 hasConceptScore W3190806616C41008148 @default.
- W3190806616 hasIssue "1" @default.
- W3190806616 hasLocation W31908066161 @default.
- W3190806616 hasOpenAccess W3190806616 @default.
- W3190806616 hasPrimaryLocation W31908066161 @default.
- W3190806616 hasRelatedWork W1899364738 @default.
- W3190806616 hasRelatedWork W1955116508 @default.
- W3190806616 hasRelatedWork W2103413230 @default.
- W3190806616 hasRelatedWork W2136321227 @default.
- W3190806616 hasRelatedWork W2355490025 @default.
- W3190806616 hasRelatedWork W2366116130 @default.
- W3190806616 hasRelatedWork W2372194912 @default.
- W3190806616 hasRelatedWork W2663901905 @default.
- W3190806616 hasRelatedWork W2908959303 @default.
- W3190806616 hasRelatedWork W43171467 @default.
- W3190806616 hasVolume "1947" @default.
- W3190806616 isParatext "false" @default.
- W3190806616 isRetracted "false" @default.
- W3190806616 magId "3190806616" @default.
- W3190806616 workType "article" @default.