Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190809134> ?p ?o ?g. }
- W3190809134 endingPage "10353" @default.
- W3190809134 startingPage "10343" @default.
- W3190809134 abstract "Taxis provide an important market for electric vehicles (EVs), but long charging durations and limited charger availability have prevented rapid adoption. Leveraging over two weeks of high-resolution GPS and battery data from almost 20,000 EVs in the all-electric Shenzhen taxi fleet, we analyze the potential to improve fleet-wide operations by optimizing both the location and timing of vehicle charging. We construct machine learning models to predict travel time, queuing time at charging stations, and charge consumption by time of day. Contrary to the emphasis on charging station siting in the literature, we find that optimizing charging locations would have a relatively limited impact. Instead, providing drivers with better real-time information about queuing times at charging stations, and enabling flexibility in battery charge during shift changes could reduce down-time per vehicle by over 30 minutes per day, while increasing the number of economically viable charging stations by over 50%. Moreover, taking full advantage of break periods and nighttime to charge could reduce downtime per vehicle by over one hour per day, reducing revenue losses due to charging by roughly 90%. These results are verified with evidence from real-time charging station data and driver shift-change data. Policy recommendations from this study include establishing citywide open data platforms to integrate real-time data on vehicle trajectory, battery charge, and charger availability, and providing drivers and companies with training on best charging practices. As a number of cities worldwide move toward fully electrified taxi fleets, this analysis has large-scale implications for decarbonized, cleaner urban areas." @default.
- W3190809134 created "2021-08-16" @default.
- W3190809134 creator A5010005236 @default.
- W3190809134 creator A5033351241 @default.
- W3190809134 creator A5061940420 @default.
- W3190809134 creator A5062666710 @default.
- W3190809134 date "2022-08-01" @default.
- W3190809134 modified "2023-10-18" @default.
- W3190809134 title "Leveraging Big Data and Coordinated Charging for Effective Taxi Fleet Electrification: The 100% EV Conversion of Shenzhen, China" @default.
- W3190809134 cites W1998111738 @default.
- W3190809134 cites W2001883119 @default.
- W3190809134 cites W2027643175 @default.
- W3190809134 cites W2071209277 @default.
- W3190809134 cites W2167885723 @default.
- W3190809134 cites W2215284045 @default.
- W3190809134 cites W2282537201 @default.
- W3190809134 cites W2282985448 @default.
- W3190809134 cites W2287746685 @default.
- W3190809134 cites W2326600353 @default.
- W3190809134 cites W2336603544 @default.
- W3190809134 cites W2385559241 @default.
- W3190809134 cites W2521153293 @default.
- W3190809134 cites W2580326292 @default.
- W3190809134 cites W2626141117 @default.
- W3190809134 cites W2778436536 @default.
- W3190809134 cites W2795059094 @default.
- W3190809134 cites W2887152558 @default.
- W3190809134 cites W2949255872 @default.
- W3190809134 doi "https://doi.org/10.1109/tits.2021.3092276" @default.
- W3190809134 hasPublicationYear "2022" @default.
- W3190809134 type Work @default.
- W3190809134 sameAs 3190809134 @default.
- W3190809134 citedByCount "3" @default.
- W3190809134 countsByYear W31908091342020 @default.
- W3190809134 countsByYear W31908091342022 @default.
- W3190809134 countsByYear W31908091342023 @default.
- W3190809134 crossrefType "journal-article" @default.
- W3190809134 hasAuthorship W3190809134A5010005236 @default.
- W3190809134 hasAuthorship W3190809134A5033351241 @default.
- W3190809134 hasAuthorship W3190809134A5061940420 @default.
- W3190809134 hasAuthorship W3190809134A5062666710 @default.
- W3190809134 hasBestOaLocation W31908091342 @default.
- W3190809134 hasConcept C105795698 @default.
- W3190809134 hasConcept C119599485 @default.
- W3190809134 hasConcept C121332964 @default.
- W3190809134 hasConcept C121955636 @default.
- W3190809134 hasConcept C127413603 @default.
- W3190809134 hasConcept C144133560 @default.
- W3190809134 hasConcept C163258240 @default.
- W3190809134 hasConcept C171146098 @default.
- W3190809134 hasConcept C183373512 @default.
- W3190809134 hasConcept C195487862 @default.
- W3190809134 hasConcept C206658404 @default.
- W3190809134 hasConcept C22212356 @default.
- W3190809134 hasConcept C22684755 @default.
- W3190809134 hasConcept C2776422217 @default.
- W3190809134 hasConcept C2777305159 @default.
- W3190809134 hasConcept C2778324724 @default.
- W3190809134 hasConcept C2779607880 @default.
- W3190809134 hasConcept C2780598303 @default.
- W3190809134 hasConcept C31258907 @default.
- W3190809134 hasConcept C33923547 @default.
- W3190809134 hasConcept C41008148 @default.
- W3190809134 hasConcept C555008776 @default.
- W3190809134 hasConcept C60229501 @default.
- W3190809134 hasConcept C62520636 @default.
- W3190809134 hasConcept C76155785 @default.
- W3190809134 hasConceptScore W3190809134C105795698 @default.
- W3190809134 hasConceptScore W3190809134C119599485 @default.
- W3190809134 hasConceptScore W3190809134C121332964 @default.
- W3190809134 hasConceptScore W3190809134C121955636 @default.
- W3190809134 hasConceptScore W3190809134C127413603 @default.
- W3190809134 hasConceptScore W3190809134C144133560 @default.
- W3190809134 hasConceptScore W3190809134C163258240 @default.
- W3190809134 hasConceptScore W3190809134C171146098 @default.
- W3190809134 hasConceptScore W3190809134C183373512 @default.
- W3190809134 hasConceptScore W3190809134C195487862 @default.
- W3190809134 hasConceptScore W3190809134C206658404 @default.
- W3190809134 hasConceptScore W3190809134C22212356 @default.
- W3190809134 hasConceptScore W3190809134C22684755 @default.
- W3190809134 hasConceptScore W3190809134C2776422217 @default.
- W3190809134 hasConceptScore W3190809134C2777305159 @default.
- W3190809134 hasConceptScore W3190809134C2778324724 @default.
- W3190809134 hasConceptScore W3190809134C2779607880 @default.
- W3190809134 hasConceptScore W3190809134C2780598303 @default.
- W3190809134 hasConceptScore W3190809134C31258907 @default.
- W3190809134 hasConceptScore W3190809134C33923547 @default.
- W3190809134 hasConceptScore W3190809134C41008148 @default.
- W3190809134 hasConceptScore W3190809134C555008776 @default.
- W3190809134 hasConceptScore W3190809134C60229501 @default.
- W3190809134 hasConceptScore W3190809134C62520636 @default.
- W3190809134 hasConceptScore W3190809134C76155785 @default.
- W3190809134 hasFunder F4320306076 @default.
- W3190809134 hasIssue "8" @default.
- W3190809134 hasLocation W31908091341 @default.
- W3190809134 hasLocation W31908091342 @default.
- W3190809134 hasOpenAccess W3190809134 @default.
- W3190809134 hasPrimaryLocation W31908091341 @default.