Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190947292> ?p ?o ?g. }
- W3190947292 endingPage "960" @default.
- W3190947292 startingPage "939" @default.
- W3190947292 abstract "This paper presents a novel robotic navigation system integrating a visual simultaneous localization and mapping (V-SLAM) based global planner with a deep reinforcement learning (DRL) based local planner. On one hand, map of many modern popular V-SLAM systems is inhomogeneous point cloud, which contains many outliers and is too sparse for reliable global path planning. To address this problem, we propose a novel approach to generate a topological map with both trajectories and map points of V-SLAM. On the other hand, current state-of-the-art (SOTA) DRL-based local planners have shown great efficiency in obstacle avoidance. However, the SOTA DRL-based local planners are sometimes trapped by large obstacles and would fall into some local minimum during training. To address the problems, we propose a sub-target module and a mirror experience replay approach. Test results demonstrate that, our topological map generation is robust against outliers and sparsity of map points of V-SLAM, while our local planner achieves 9.61% success rate of obstacle avoidance higher than the SOTA DRL-based approach. Tests in real environment demonstrate the feasibility of our navigation system." @default.
- W3190947292 created "2021-08-16" @default.
- W3190947292 creator A5012509620 @default.
- W3190947292 creator A5028655194 @default.
- W3190947292 creator A5032986088 @default.
- W3190947292 creator A5034251794 @default.
- W3190947292 creator A5048965499 @default.
- W3190947292 creator A5086920847 @default.
- W3190947292 date "2021-08-03" @default.
- W3190947292 modified "2023-10-16" @default.
- W3190947292 title "Navigation system with SLAM-based trajectory topological map and reinforcement learning-based local planner" @default.
- W3190947292 cites W1514191729 @default.
- W3190947292 cites W1560270123 @default.
- W3190947292 cites W1572346965 @default.
- W3190947292 cites W1605218591 @default.
- W3190947292 cites W2030021468 @default.
- W3190947292 cites W2083118096 @default.
- W3190947292 cites W2117211893 @default.
- W3190947292 cites W2125409550 @default.
- W3190947292 cites W2129117416 @default.
- W3190947292 cites W2133844819 @default.
- W3190947292 cites W2134556823 @default.
- W3190947292 cites W2145755120 @default.
- W3190947292 cites W2163800924 @default.
- W3190947292 cites W2202251471 @default.
- W3190947292 cites W2312791952 @default.
- W3190947292 cites W2561780869 @default.
- W3190947292 cites W2587415290 @default.
- W3190947292 cites W2609009256 @default.
- W3190947292 cites W2740584750 @default.
- W3190947292 cites W2745859992 @default.
- W3190947292 cites W2775496939 @default.
- W3190947292 cites W2795561664 @default.
- W3190947292 cites W2906798544 @default.
- W3190947292 cites W2909710443 @default.
- W3190947292 cites W2917089854 @default.
- W3190947292 cites W2935428080 @default.
- W3190947292 cites W2962957005 @default.
- W3190947292 cites W2963019567 @default.
- W3190947292 cites W2963129648 @default.
- W3190947292 cites W2963428623 @default.
- W3190947292 cites W2963872397 @default.
- W3190947292 cites W2967572567 @default.
- W3190947292 cites W2980701808 @default.
- W3190947292 cites W3016889590 @default.
- W3190947292 cites W3018372220 @default.
- W3190947292 cites W3031798691 @default.
- W3190947292 cites W3035410609 @default.
- W3190947292 cites W3102327032 @default.
- W3190947292 cites W2943754116 @default.
- W3190947292 doi "https://doi.org/10.1080/01691864.2021.1938671" @default.
- W3190947292 hasPublicationYear "2021" @default.
- W3190947292 type Work @default.
- W3190947292 sameAs 3190947292 @default.
- W3190947292 citedByCount "1" @default.
- W3190947292 crossrefType "journal-article" @default.
- W3190947292 hasAuthorship W3190947292A5012509620 @default.
- W3190947292 hasAuthorship W3190947292A5028655194 @default.
- W3190947292 hasAuthorship W3190947292A5032986088 @default.
- W3190947292 hasAuthorship W3190947292A5034251794 @default.
- W3190947292 hasAuthorship W3190947292A5048965499 @default.
- W3190947292 hasAuthorship W3190947292A5086920847 @default.
- W3190947292 hasConcept C121332964 @default.
- W3190947292 hasConcept C1276947 @default.
- W3190947292 hasConcept C131979681 @default.
- W3190947292 hasConcept C13662910 @default.
- W3190947292 hasConcept C154945302 @default.
- W3190947292 hasConcept C166957645 @default.
- W3190947292 hasConcept C199538142 @default.
- W3190947292 hasConcept C19966478 @default.
- W3190947292 hasConcept C205649164 @default.
- W3190947292 hasConcept C2776650193 @default.
- W3190947292 hasConcept C2776999362 @default.
- W3190947292 hasConcept C31972630 @default.
- W3190947292 hasConcept C41008148 @default.
- W3190947292 hasConcept C6683253 @default.
- W3190947292 hasConcept C79337645 @default.
- W3190947292 hasConcept C81074085 @default.
- W3190947292 hasConcept C86369673 @default.
- W3190947292 hasConcept C90509273 @default.
- W3190947292 hasConcept C97541855 @default.
- W3190947292 hasConceptScore W3190947292C121332964 @default.
- W3190947292 hasConceptScore W3190947292C1276947 @default.
- W3190947292 hasConceptScore W3190947292C131979681 @default.
- W3190947292 hasConceptScore W3190947292C13662910 @default.
- W3190947292 hasConceptScore W3190947292C154945302 @default.
- W3190947292 hasConceptScore W3190947292C166957645 @default.
- W3190947292 hasConceptScore W3190947292C199538142 @default.
- W3190947292 hasConceptScore W3190947292C19966478 @default.
- W3190947292 hasConceptScore W3190947292C205649164 @default.
- W3190947292 hasConceptScore W3190947292C2776650193 @default.
- W3190947292 hasConceptScore W3190947292C2776999362 @default.
- W3190947292 hasConceptScore W3190947292C31972630 @default.
- W3190947292 hasConceptScore W3190947292C41008148 @default.
- W3190947292 hasConceptScore W3190947292C6683253 @default.
- W3190947292 hasConceptScore W3190947292C79337645 @default.
- W3190947292 hasConceptScore W3190947292C81074085 @default.
- W3190947292 hasConceptScore W3190947292C86369673 @default.