Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191074264> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3191074264 abstract "In this current tech-savvy world, there is a rising challenge for software systems to be able to recognize characters via computing systems, a lot of crucial and sensitive data is scanned through documents that are solely paper-based and are accessible to us only in the form of newspapers, books, thesis, articles, documents etc. which are in printed format only. Nowadays, there is an ever-increasing demand for storing this crucial data that is apparently present only in these paper-based documents into a storage disk of digital nature and then reutilizing the same whenever deemed necessary simply by a predefined search process. A simple way to transfer data from these paper documents into digital storage systems is to first scan those documents and then store them as images. But the challenge is introduced when we feel the need to reutilize this data as it gets quite challenging to read a specific data from these documents. A major cause for this challenge is that the font properties of these characters that appear in paper documents are different when compared to the fonts of the characters in computing systems. Hence, a computer is ceases to recognize these characters while reading them. This concept of processing data from hard paper documents in digital storage spaces and then reading it is called Document Processing. In Document Processing, we make use of a system called Optical Character Recognition to achieve the needful. To further expand our understanding of how these systems work, this paper analyzes and compares several neural networks viz: Simple (Artificial) Neural Network, Convolutional Neural Network and Recurrent Neural Network, that use Deep Learning to implement Handwritten Character Recognition." @default.
- W3191074264 created "2021-08-16" @default.
- W3191074264 creator A5039400990 @default.
- W3191074264 creator A5054720190 @default.
- W3191074264 date "2021-06-25" @default.
- W3191074264 modified "2023-09-27" @default.
- W3191074264 title "Analytical Study of Handwritten Character Recognition: A Deep Learning Way" @default.
- W3191074264 cites W1967942900 @default.
- W3191074264 cites W2017787659 @default.
- W3191074264 cites W2029189646 @default.
- W3191074264 cites W2119761601 @default.
- W3191074264 cites W2123040333 @default.
- W3191074264 cites W2152928267 @default.
- W3191074264 cites W2538648699 @default.
- W3191074264 cites W2963122216 @default.
- W3191074264 doi "https://doi.org/10.1109/conit51480.2021.9498347" @default.
- W3191074264 hasPublicationYear "2021" @default.
- W3191074264 type Work @default.
- W3191074264 sameAs 3191074264 @default.
- W3191074264 citedByCount "1" @default.
- W3191074264 countsByYear W31910742642022 @default.
- W3191074264 crossrefType "proceedings-article" @default.
- W3191074264 hasAuthorship W3191074264A5039400990 @default.
- W3191074264 hasAuthorship W3191074264A5054720190 @default.
- W3191074264 hasConcept C115961682 @default.
- W3191074264 hasConcept C136764020 @default.
- W3191074264 hasConcept C154945302 @default.
- W3191074264 hasConcept C17744445 @default.
- W3191074264 hasConcept C199360897 @default.
- W3191074264 hasConcept C199539241 @default.
- W3191074264 hasConcept C23123220 @default.
- W3191074264 hasConcept C2524010 @default.
- W3191074264 hasConcept C2777737414 @default.
- W3191074264 hasConcept C2777904410 @default.
- W3191074264 hasConcept C2779308522 @default.
- W3191074264 hasConcept C2780861071 @default.
- W3191074264 hasConcept C2987247673 @default.
- W3191074264 hasConcept C31972630 @default.
- W3191074264 hasConcept C33923547 @default.
- W3191074264 hasConcept C41008148 @default.
- W3191074264 hasConcept C546480517 @default.
- W3191074264 hasConcept C554936623 @default.
- W3191074264 hasConcept C67905146 @default.
- W3191074264 hasConcept C98045186 @default.
- W3191074264 hasConceptScore W3191074264C115961682 @default.
- W3191074264 hasConceptScore W3191074264C136764020 @default.
- W3191074264 hasConceptScore W3191074264C154945302 @default.
- W3191074264 hasConceptScore W3191074264C17744445 @default.
- W3191074264 hasConceptScore W3191074264C199360897 @default.
- W3191074264 hasConceptScore W3191074264C199539241 @default.
- W3191074264 hasConceptScore W3191074264C23123220 @default.
- W3191074264 hasConceptScore W3191074264C2524010 @default.
- W3191074264 hasConceptScore W3191074264C2777737414 @default.
- W3191074264 hasConceptScore W3191074264C2777904410 @default.
- W3191074264 hasConceptScore W3191074264C2779308522 @default.
- W3191074264 hasConceptScore W3191074264C2780861071 @default.
- W3191074264 hasConceptScore W3191074264C2987247673 @default.
- W3191074264 hasConceptScore W3191074264C31972630 @default.
- W3191074264 hasConceptScore W3191074264C33923547 @default.
- W3191074264 hasConceptScore W3191074264C41008148 @default.
- W3191074264 hasConceptScore W3191074264C546480517 @default.
- W3191074264 hasConceptScore W3191074264C554936623 @default.
- W3191074264 hasConceptScore W3191074264C67905146 @default.
- W3191074264 hasConceptScore W3191074264C98045186 @default.
- W3191074264 hasLocation W31910742641 @default.
- W3191074264 hasOpenAccess W3191074264 @default.
- W3191074264 hasPrimaryLocation W31910742641 @default.
- W3191074264 hasRelatedWork W1900167231 @default.
- W3191074264 hasRelatedWork W1984252179 @default.
- W3191074264 hasRelatedWork W2141844556 @default.
- W3191074264 hasRelatedWork W2554293530 @default.
- W3191074264 hasRelatedWork W2941887843 @default.
- W3191074264 hasRelatedWork W2982312811 @default.
- W3191074264 hasRelatedWork W3081694870 @default.
- W3191074264 hasRelatedWork W4223965135 @default.
- W3191074264 hasRelatedWork W1986774939 @default.
- W3191074264 hasRelatedWork W2481427007 @default.
- W3191074264 isParatext "false" @default.
- W3191074264 isRetracted "false" @default.
- W3191074264 magId "3191074264" @default.
- W3191074264 workType "article" @default.