Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191107070> ?p ?o ?g. }
- W3191107070 abstract "Abstract Automatic segmentation of key microstructural features in atomic-scale electron microscope images is critical to improved understanding of structure–property relationships in many important materials and chemical systems. However, the present paradigm involves time-intensive manual analysis that is inherently biased, error-prone, and unable to accommodate the large volumes of data produced by modern instrumentation. While more automated approaches have been proposed, many are not robust to a high variety of data, and do not generalize well to diverse microstructural features and material systems. Here, we present a flexible, semi-supervised few-shot machine learning approach for segmentation of scanning transmission electron microscopy images of three oxide material systems: (1) epitaxial heterostructures of SrTiO 3 /Ge, (2) La 0.8 Sr 0.2 FeO 3 thin films, and (3) MoO 3 nanoparticles. We demonstrate that the few-shot learning method is more robust against noise, more reconfigurable, and requires less data than conventional image analysis methods. This approach can enable rapid image classification and microstructural feature mapping needed for emerging high-throughput characterization and autonomous microscope platforms." @default.
- W3191107070 created "2021-08-16" @default.
- W3191107070 creator A5009921172 @default.
- W3191107070 creator A5015063874 @default.
- W3191107070 creator A5018958990 @default.
- W3191107070 creator A5021095828 @default.
- W3191107070 creator A5029611334 @default.
- W3191107070 creator A5034378116 @default.
- W3191107070 creator A5047832258 @default.
- W3191107070 creator A5067121949 @default.
- W3191107070 date "2021-11-17" @default.
- W3191107070 modified "2023-10-14" @default.
- W3191107070 title "Rapid and flexible segmentation of electron microscopy data using few-shot machine learning" @default.
- W3191107070 cites W1141054642 @default.
- W3191107070 cites W1510297056 @default.
- W3191107070 cites W1901129140 @default.
- W3191107070 cites W2001412060 @default.
- W3191107070 cites W2015159529 @default.
- W3191107070 cites W2030536784 @default.
- W3191107070 cites W2058333183 @default.
- W3191107070 cites W2102636083 @default.
- W3191107070 cites W2108598243 @default.
- W3191107070 cites W2111124526 @default.
- W3191107070 cites W2118246710 @default.
- W3191107070 cites W2125646496 @default.
- W3191107070 cites W2128629135 @default.
- W3191107070 cites W2133059825 @default.
- W3191107070 cites W2150444965 @default.
- W3191107070 cites W2150446629 @default.
- W3191107070 cites W2194775991 @default.
- W3191107070 cites W2273760111 @default.
- W3191107070 cites W2406493898 @default.
- W3191107070 cites W2462290730 @default.
- W3191107070 cites W2507203144 @default.
- W3191107070 cites W2538148001 @default.
- W3191107070 cites W2565684601 @default.
- W3191107070 cites W2567144595 @default.
- W3191107070 cites W2595874288 @default.
- W3191107070 cites W2758586798 @default.
- W3191107070 cites W2771733300 @default.
- W3191107070 cites W2776265614 @default.
- W3191107070 cites W2784180243 @default.
- W3191107070 cites W2886488005 @default.
- W3191107070 cites W2888023353 @default.
- W3191107070 cites W2963972454 @default.
- W3191107070 cites W2964105864 @default.
- W3191107070 cites W2971847579 @default.
- W3191107070 cites W2979787649 @default.
- W3191107070 cites W2982409629 @default.
- W3191107070 cites W3009135007 @default.
- W3191107070 cites W3013833621 @default.
- W3191107070 cites W3017113473 @default.
- W3191107070 cites W3025463875 @default.
- W3191107070 cites W3028596285 @default.
- W3191107070 cites W3045580189 @default.
- W3191107070 cites W3093632722 @default.
- W3191107070 cites W3094545446 @default.
- W3191107070 cites W3099554308 @default.
- W3191107070 cites W3099859964 @default.
- W3191107070 cites W3100230575 @default.
- W3191107070 cites W3100990679 @default.
- W3191107070 cites W3101647413 @default.
- W3191107070 cites W3105328450 @default.
- W3191107070 cites W3105641071 @default.
- W3191107070 cites W3153383187 @default.
- W3191107070 cites W3153542881 @default.
- W3191107070 cites W3162692571 @default.
- W3191107070 doi "https://doi.org/10.1038/s41524-021-00652-z" @default.
- W3191107070 hasPublicationYear "2021" @default.
- W3191107070 type Work @default.
- W3191107070 sameAs 3191107070 @default.
- W3191107070 citedByCount "27" @default.
- W3191107070 countsByYear W31911070702022 @default.
- W3191107070 countsByYear W31911070702023 @default.
- W3191107070 crossrefType "journal-article" @default.
- W3191107070 hasAuthorship W3191107070A5009921172 @default.
- W3191107070 hasAuthorship W3191107070A5015063874 @default.
- W3191107070 hasAuthorship W3191107070A5018958990 @default.
- W3191107070 hasAuthorship W3191107070A5021095828 @default.
- W3191107070 hasAuthorship W3191107070A5029611334 @default.
- W3191107070 hasAuthorship W3191107070A5034378116 @default.
- W3191107070 hasAuthorship W3191107070A5047832258 @default.
- W3191107070 hasAuthorship W3191107070A5067121949 @default.
- W3191107070 hasBestOaLocation W31911070701 @default.
- W3191107070 hasConcept C111919701 @default.
- W3191107070 hasConcept C115961682 @default.
- W3191107070 hasConcept C118530786 @default.
- W3191107070 hasConcept C119857082 @default.
- W3191107070 hasConcept C138885662 @default.
- W3191107070 hasConcept C146088050 @default.
- W3191107070 hasConcept C154945302 @default.
- W3191107070 hasConcept C157764524 @default.
- W3191107070 hasConcept C171250308 @default.
- W3191107070 hasConcept C191897082 @default.
- W3191107070 hasConcept C192562407 @default.
- W3191107070 hasConcept C2776401178 @default.
- W3191107070 hasConcept C2778344882 @default.
- W3191107070 hasConcept C2780841128 @default.
- W3191107070 hasConcept C31972630 @default.
- W3191107070 hasConcept C41008148 @default.