Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191457557> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3191457557 abstract "This paper aims at designing high-data-rate swarm UAV networks with distributed beamforming capabilities. The primary challenge is that the beamforming gain in swarm UAV networks is highly affected by the UAVs’ flight altitude, their movements and the resulting intermittent link blockages, as well as the availability of channel state information (CSI) at individual UAVs. To address this challenge, we propose FlyBeam, a learning- based framework for joint flight and beamforming control in swarm UAV networks. We first present a mathematical formulation of the control problem with the objective of maximizing the throughput of swarm UAV networks by jointly controlling the flight and distributed beamforming of UAVs. Then, a distributed solution algorithm is designed based on a combination of Echo State Network learning and online reinforcement learning. The former is adopted to approximate the utility function for individual UAVs based on online measurements, by jointly considering the unknown blockage dynamics and other factors that affect the beamforming gain. The latter is used to guide the exploitation and exploration in FlyBeam. The effectiveness of FlyBeam is evaluated through an extensive simulation campaign. Results indicate that significant (up to 450%) beamforming gain can be achieved by FlyBeam. We also investigate the effects of blockages and UAV flight altitude on the beamforming gain. It is found that, which is somewhat surprising, higher (rather than lower) beamforming gain can be achieved by FlyBeam with denser blockages in swarm UAV networks." @default.
- W3191457557 created "2021-08-16" @default.
- W3191457557 creator A5019412797 @default.
- W3191457557 creator A5041986340 @default.
- W3191457557 creator A5071876359 @default.
- W3191457557 creator A5085416965 @default.
- W3191457557 date "2021-06-01" @default.
- W3191457557 modified "2023-10-16" @default.
- W3191457557 title "FlyBeam: Echo State Learning for Joint Flight and Beamforming Control in Wireless UAV Networks" @default.
- W3191457557 cites W1597079040 @default.
- W3191457557 cites W1992299264 @default.
- W3191457557 cites W2042195586 @default.
- W3191457557 cites W2073252511 @default.
- W3191457557 cites W2121863487 @default.
- W3191457557 cites W2177933918 @default.
- W3191457557 cites W2407842861 @default.
- W3191457557 cites W2549389582 @default.
- W3191457557 cites W2611982777 @default.
- W3191457557 cites W2765388137 @default.
- W3191457557 cites W2889655092 @default.
- W3191457557 cites W2904483840 @default.
- W3191457557 cites W2913780963 @default.
- W3191457557 cites W2956281646 @default.
- W3191457557 cites W2962691117 @default.
- W3191457557 cites W2963061782 @default.
- W3191457557 cites W2963542767 @default.
- W3191457557 cites W2965774728 @default.
- W3191457557 cites W2982626185 @default.
- W3191457557 cites W2989638095 @default.
- W3191457557 cites W3013440451 @default.
- W3191457557 cites W3021695453 @default.
- W3191457557 cites W3042876727 @default.
- W3191457557 cites W3047099940 @default.
- W3191457557 cites W3047202536 @default.
- W3191457557 doi "https://doi.org/10.1109/icc42927.2021.9500519" @default.
- W3191457557 hasPublicationYear "2021" @default.
- W3191457557 type Work @default.
- W3191457557 sameAs 3191457557 @default.
- W3191457557 citedByCount "1" @default.
- W3191457557 countsByYear W31914575572023 @default.
- W3191457557 crossrefType "proceedings-article" @default.
- W3191457557 hasAuthorship W3191457557A5019412797 @default.
- W3191457557 hasAuthorship W3191457557A5041986340 @default.
- W3191457557 hasAuthorship W3191457557A5071876359 @default.
- W3191457557 hasAuthorship W3191457557A5085416965 @default.
- W3191457557 hasConcept C148063708 @default.
- W3191457557 hasConcept C154945302 @default.
- W3191457557 hasConcept C181335050 @default.
- W3191457557 hasConcept C41008148 @default.
- W3191457557 hasConcept C54197355 @default.
- W3191457557 hasConcept C555944384 @default.
- W3191457557 hasConcept C76155785 @default.
- W3191457557 hasConcept C97541855 @default.
- W3191457557 hasConceptScore W3191457557C148063708 @default.
- W3191457557 hasConceptScore W3191457557C154945302 @default.
- W3191457557 hasConceptScore W3191457557C181335050 @default.
- W3191457557 hasConceptScore W3191457557C41008148 @default.
- W3191457557 hasConceptScore W3191457557C54197355 @default.
- W3191457557 hasConceptScore W3191457557C555944384 @default.
- W3191457557 hasConceptScore W3191457557C76155785 @default.
- W3191457557 hasConceptScore W3191457557C97541855 @default.
- W3191457557 hasLocation W31914575571 @default.
- W3191457557 hasOpenAccess W3191457557 @default.
- W3191457557 hasPrimaryLocation W31914575571 @default.
- W3191457557 hasRelatedWork W2675879247 @default.
- W3191457557 hasRelatedWork W2964468371 @default.
- W3191457557 hasRelatedWork W3013262923 @default.
- W3191457557 hasRelatedWork W3172552950 @default.
- W3191457557 hasRelatedWork W3191457557 @default.
- W3191457557 hasRelatedWork W4287218615 @default.
- W3191457557 hasRelatedWork W4292347981 @default.
- W3191457557 hasRelatedWork W4297095235 @default.
- W3191457557 hasRelatedWork W4298346301 @default.
- W3191457557 hasRelatedWork W4307225425 @default.
- W3191457557 isParatext "false" @default.
- W3191457557 isRetracted "false" @default.
- W3191457557 magId "3191457557" @default.
- W3191457557 workType "article" @default.