Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191592657> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3191592657 endingPage "105488" @default.
- W3191592657 startingPage "105488" @default.
- W3191592657 abstract "This paper addresses the customer order scheduling problem in parallel production environment commonly appearing in the pharmaceutical and paper industries. The problem aims to minimize the total completion time of the orders with their jobs processed on dedicated machines in parallel. To deal with the computational challenge of large-scale problems, we propose a learning-based two-stage optimization method consisting of a learned dispatching rule in the first stage and an adaptive local search in the second stage. The new dispatching rules are automatically generated by the proposed feature-enhanced genetic programming method in an off-line learning manner. Based on the high-quality initial solutions provided by the learned dispatching rule, we develop an adaptive local search to further improve the solution quality. Numerical results indicate the superiority of the learned dispatching rule and show the proposed two-stage optimization method significantly outperforms state-of-the-art methods in the literature." @default.
- W3191592657 created "2021-08-16" @default.
- W3191592657 creator A5011438608 @default.
- W3191592657 creator A5030355520 @default.
- W3191592657 creator A5031285518 @default.
- W3191592657 creator A5044305244 @default.
- W3191592657 creator A5070777072 @default.
- W3191592657 date "2021-12-01" @default.
- W3191592657 modified "2023-10-15" @default.
- W3191592657 title "A learning-based two-stage optimization method for customer order scheduling" @default.
- W3191592657 cites W107096148 @default.
- W3191592657 cites W1966097591 @default.
- W3191592657 cites W1974225208 @default.
- W3191592657 cites W1976095286 @default.
- W3191592657 cites W1996897620 @default.
- W3191592657 cites W2007500066 @default.
- W3191592657 cites W2015082608 @default.
- W3191592657 cites W2016432178 @default.
- W3191592657 cites W2040492000 @default.
- W3191592657 cites W2065186919 @default.
- W3191592657 cites W2072441740 @default.
- W3191592657 cites W2083233352 @default.
- W3191592657 cites W2087304354 @default.
- W3191592657 cites W2089364174 @default.
- W3191592657 cites W2091666510 @default.
- W3191592657 cites W2092204527 @default.
- W3191592657 cites W2092252886 @default.
- W3191592657 cites W2119924737 @default.
- W3191592657 cites W2158691252 @default.
- W3191592657 cites W2159158649 @default.
- W3191592657 cites W2275596639 @default.
- W3191592657 cites W2345851607 @default.
- W3191592657 cites W2398671303 @default.
- W3191592657 cites W2486366099 @default.
- W3191592657 cites W2520193567 @default.
- W3191592657 cites W2526903408 @default.
- W3191592657 cites W2528298246 @default.
- W3191592657 cites W2566778595 @default.
- W3191592657 cites W2590959390 @default.
- W3191592657 cites W2766070900 @default.
- W3191592657 cites W2768390119 @default.
- W3191592657 cites W2792893801 @default.
- W3191592657 cites W2800137796 @default.
- W3191592657 cites W2803896320 @default.
- W3191592657 cites W2889159422 @default.
- W3191592657 cites W2889717464 @default.
- W3191592657 cites W2896648838 @default.
- W3191592657 cites W2937671416 @default.
- W3191592657 cites W2944190917 @default.
- W3191592657 cites W2965702552 @default.
- W3191592657 doi "https://doi.org/10.1016/j.cor.2021.105488" @default.
- W3191592657 hasPublicationYear "2021" @default.
- W3191592657 type Work @default.
- W3191592657 sameAs 3191592657 @default.
- W3191592657 citedByCount "0" @default.
- W3191592657 crossrefType "journal-article" @default.
- W3191592657 hasAuthorship W3191592657A5011438608 @default.
- W3191592657 hasAuthorship W3191592657A5030355520 @default.
- W3191592657 hasAuthorship W3191592657A5031285518 @default.
- W3191592657 hasAuthorship W3191592657A5044305244 @default.
- W3191592657 hasAuthorship W3191592657A5070777072 @default.
- W3191592657 hasConcept C111919701 @default.
- W3191592657 hasConcept C126255220 @default.
- W3191592657 hasConcept C154945302 @default.
- W3191592657 hasConcept C206729178 @default.
- W3191592657 hasConcept C33923547 @default.
- W3191592657 hasConcept C41008148 @default.
- W3191592657 hasConcept C55416958 @default.
- W3191592657 hasConcept C68387754 @default.
- W3191592657 hasConceptScore W3191592657C111919701 @default.
- W3191592657 hasConceptScore W3191592657C126255220 @default.
- W3191592657 hasConceptScore W3191592657C154945302 @default.
- W3191592657 hasConceptScore W3191592657C206729178 @default.
- W3191592657 hasConceptScore W3191592657C33923547 @default.
- W3191592657 hasConceptScore W3191592657C41008148 @default.
- W3191592657 hasConceptScore W3191592657C55416958 @default.
- W3191592657 hasConceptScore W3191592657C68387754 @default.
- W3191592657 hasLocation W31915926571 @default.
- W3191592657 hasOpenAccess W3191592657 @default.
- W3191592657 hasPrimaryLocation W31915926571 @default.
- W3191592657 hasRelatedWork W2112121444 @default.
- W3191592657 hasRelatedWork W2358668433 @default.
- W3191592657 hasRelatedWork W2376932109 @default.
- W3191592657 hasRelatedWork W2382290278 @default.
- W3191592657 hasRelatedWork W2390279801 @default.
- W3191592657 hasRelatedWork W2509452605 @default.
- W3191592657 hasRelatedWork W2748952813 @default.
- W3191592657 hasRelatedWork W2899084033 @default.
- W3191592657 hasRelatedWork W3172150420 @default.
- W3191592657 hasRelatedWork W3204654320 @default.
- W3191592657 hasVolume "136" @default.
- W3191592657 isParatext "false" @default.
- W3191592657 isRetracted "false" @default.
- W3191592657 magId "3191592657" @default.
- W3191592657 workType "article" @default.