Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191623903> ?p ?o ?g. }
- W3191623903 endingPage "763" @default.
- W3191623903 startingPage "751" @default.
- W3191623903 abstract "ConspectusAmong two-dimensional (2D) layered materials, metallic transition metal dichalcogenides (MTMDCs) are emerging as promising candidates in many application aspects (e.g., electronics, spintronics, and energy related fields, etc.) in view of their ultrahigh electronic conductivities, newfangled room-temperature ferromagnetism (e.g., VSe2, VTe2), and excellent catalytic activities. Specially, 2D TaX2 and VX2 (X = S, Se, Te) materials stand in a vital place on account of their exotic physical and chemical properties. Notably, the controlled synthesis of such materials is the premise for exploring the aforementioned properties and applications. Among the reported preparation methods, chemical vapor deposition (CVD) is proven to be a promising approach in view of its scalability, simple operation, low cost, etc. This method has been employed to synthesize various 2D layered materials and heterostructures in a well-controlled fashion. Nevertheless, in view of the complicated growth mechanism and process, the CVD growth of ultrathin TaX2 and VX2 nanosheets/films remains extremely challenging. In addition, the application explorations of 2D TaX2 and VX2 in the energy related fields and electronic devices are still in the primary stage.In this Account, we review the up-to-date advances regarding the CVD syntheses of 2D TaX2 and VX2 (e.g., TaS2, TaSe2, VS2, VSe2, and VTe2, etc.) and air-stable MTMDCs (e.g., PtSe2, NiTe2), as well as their multifunctional applications in the energy related fields and electronic devices. First, the CVD growth of TaX2 and VX2 nanosheets/films with tunable thicknesses/domain sizes and the MTMDCs/semiconducting TMDCs vertical heterostructures are systematically summarized. Second, the application explorations of CVD-synthesized 2D TaX2 and VX2 as high-performance electrode materials in electrocatalytic hydrogen evolution reaction (HER) and electronic devices are introduced, respectively. Third, the CVD syntheses of 2D MTMDCs with robust environmental stability and novel physical properties (e.g., semimetal–semiconductor transition, magnetism) are discussed. In the end, the challenges regarding the preparations and multifunctional applications of 2D MTMDCs are highlighted, and the future research directions are also proposed. We believe that this Account is comprehensive and insightful for the CVD syntheses of high-quality 2D MTMDCs materials toward versatile applications." @default.
- W3191623903 created "2021-08-16" @default.
- W3191623903 creator A5030937712 @default.
- W3191623903 creator A5049078993 @default.
- W3191623903 creator A5078440856 @default.
- W3191623903 creator A5088074452 @default.
- W3191623903 creator A5088683689 @default.
- W3191623903 creator A5090464582 @default.
- W3191623903 date "2021-08-06" @default.
- W3191623903 modified "2023-10-15" @default.
- W3191623903 title "Controlled Syntheses and Multifunctional Applications of Two-Dimensional Metallic Transition Metal Dichalcogenides" @default.
- W3191623903 cites W1892134475 @default.
- W3191623903 cites W1967522506 @default.
- W3191623903 cites W1974896731 @default.
- W3191623903 cites W2002532537 @default.
- W3191623903 cites W2086270926 @default.
- W3191623903 cites W2256401257 @default.
- W3191623903 cites W2294352427 @default.
- W3191623903 cites W2300069949 @default.
- W3191623903 cites W2301580049 @default.
- W3191623903 cites W2304116750 @default.
- W3191623903 cites W2338708340 @default.
- W3191623903 cites W2412923470 @default.
- W3191623903 cites W2525250654 @default.
- W3191623903 cites W2531291935 @default.
- W3191623903 cites W2546918340 @default.
- W3191623903 cites W2556215019 @default.
- W3191623903 cites W2606397457 @default.
- W3191623903 cites W2610466458 @default.
- W3191623903 cites W2739978614 @default.
- W3191623903 cites W2743727185 @default.
- W3191623903 cites W2744024286 @default.
- W3191623903 cites W2756316035 @default.
- W3191623903 cites W2762125931 @default.
- W3191623903 cites W2787199764 @default.
- W3191623903 cites W2797506253 @default.
- W3191623903 cites W2800438361 @default.
- W3191623903 cites W2804762466 @default.
- W3191623903 cites W2811138498 @default.
- W3191623903 cites W2811244012 @default.
- W3191623903 cites W2885115484 @default.
- W3191623903 cites W2888526952 @default.
- W3191623903 cites W2890282424 @default.
- W3191623903 cites W2891480509 @default.
- W3191623903 cites W2905951671 @default.
- W3191623903 cites W2928093089 @default.
- W3191623903 cites W2949253137 @default.
- W3191623903 cites W2952157044 @default.
- W3191623903 cites W2969507463 @default.
- W3191623903 cites W2971271778 @default.
- W3191623903 cites W2977159021 @default.
- W3191623903 cites W2999350719 @default.
- W3191623903 cites W3009864654 @default.
- W3191623903 cites W3011517822 @default.
- W3191623903 cites W3015456674 @default.
- W3191623903 cites W3017192294 @default.
- W3191623903 cites W3037012330 @default.
- W3191623903 cites W3043538668 @default.
- W3191623903 cites W3080481369 @default.
- W3191623903 cites W3099733718 @default.
- W3191623903 cites W3106150808 @default.
- W3191623903 cites W3110964188 @default.
- W3191623903 cites W3112676957 @default.
- W3191623903 cites W3119191440 @default.
- W3191623903 cites W3164438890 @default.
- W3191623903 doi "https://doi.org/10.1021/accountsmr.1c00092" @default.
- W3191623903 hasPublicationYear "2021" @default.
- W3191623903 type Work @default.
- W3191623903 sameAs 3191623903 @default.
- W3191623903 citedByCount "9" @default.
- W3191623903 countsByYear W31916239032022 @default.
- W3191623903 countsByYear W31916239032023 @default.
- W3191623903 crossrefType "journal-article" @default.
- W3191623903 hasAuthorship W3191623903A5030937712 @default.
- W3191623903 hasAuthorship W3191623903A5049078993 @default.
- W3191623903 hasAuthorship W3191623903A5078440856 @default.
- W3191623903 hasAuthorship W3191623903A5088074452 @default.
- W3191623903 hasAuthorship W3191623903A5088683689 @default.
- W3191623903 hasAuthorship W3191623903A5090464582 @default.
- W3191623903 hasConcept C106773901 @default.
- W3191623903 hasConcept C138331895 @default.
- W3191623903 hasConcept C147789679 @default.
- W3191623903 hasConcept C161790260 @default.
- W3191623903 hasConcept C171250308 @default.
- W3191623903 hasConcept C185592680 @default.
- W3191623903 hasConcept C192562407 @default.
- W3191623903 hasConcept C49040817 @default.
- W3191623903 hasConcept C55493867 @default.
- W3191623903 hasConcept C57410435 @default.
- W3191623903 hasConcept C79794668 @default.
- W3191623903 hasConceptScore W3191623903C106773901 @default.
- W3191623903 hasConceptScore W3191623903C138331895 @default.
- W3191623903 hasConceptScore W3191623903C147789679 @default.
- W3191623903 hasConceptScore W3191623903C161790260 @default.
- W3191623903 hasConceptScore W3191623903C171250308 @default.
- W3191623903 hasConceptScore W3191623903C185592680 @default.
- W3191623903 hasConceptScore W3191623903C192562407 @default.
- W3191623903 hasConceptScore W3191623903C49040817 @default.