Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191702209> ?p ?o ?g. }
- W3191702209 endingPage "5873" @default.
- W3191702209 startingPage "5862" @default.
- W3191702209 abstract "Auto-segmentation algorithms offer a potential solution to eliminate the labor-intensive, time-consuming, and observer-dependent manual delineation of organs-at-risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning-based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state-of-the-art auto-delineation algorithms.The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony-structure contrast) and magnetic resonance imaging (MRI) (soft-tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre-trained cycle-consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in-house and public datasets containing CT scans from head-and-neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state-of-the-art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS).Across all of 18 OARs in our in-house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58-0.90), 2.90 mm (1.32-7.63 mm), 0.89 mm (0.42-1.85 mm), and 1.44 mm (0.71-3.15 mm), respectively, outperforming the current state-of-the-art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73-0.97) were achieved, 6% better than the competing methods.We demonstrated the feasibility of a synthetic MRI-aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy." @default.
- W3191702209 created "2021-08-16" @default.
- W3191702209 creator A5009731683 @default.
- W3191702209 creator A5011903902 @default.
- W3191702209 creator A5026088869 @default.
- W3191702209 creator A5026661364 @default.
- W3191702209 creator A5030054597 @default.
- W3191702209 creator A5043052005 @default.
- W3191702209 creator A5049656223 @default.
- W3191702209 creator A5053851809 @default.
- W3191702209 creator A5078938291 @default.
- W3191702209 creator A5086616055 @default.
- W3191702209 date "2021-08-18" @default.
- W3191702209 modified "2023-10-05" @default.
- W3191702209 title "Automated delineation of head and neck organs at risk using synthetic MRI‐aided mask scoring regional convolutional neural network" @default.
- W3191702209 cites W1901129140 @default.
- W3191702209 cites W2028129509 @default.
- W3191702209 cites W2081420220 @default.
- W3191702209 cites W2082425609 @default.
- W3191702209 cites W2102605133 @default.
- W3191702209 cites W2107595635 @default.
- W3191702209 cites W2112884386 @default.
- W3191702209 cites W2121138325 @default.
- W3191702209 cites W2143926641 @default.
- W3191702209 cites W2144771422 @default.
- W3191702209 cites W2560725027 @default.
- W3191702209 cites W2593013519 @default.
- W3191702209 cites W2738088905 @default.
- W3191702209 cites W2791680898 @default.
- W3191702209 cites W2888667538 @default.
- W3191702209 cites W2898197178 @default.
- W3191702209 cites W2898871261 @default.
- W3191702209 cites W2905023912 @default.
- W3191702209 cites W2920291762 @default.
- W3191702209 cites W2920326761 @default.
- W3191702209 cites W2922812404 @default.
- W3191702209 cites W2923425487 @default.
- W3191702209 cites W2925142108 @default.
- W3191702209 cites W2945263066 @default.
- W3191702209 cites W2946394741 @default.
- W3191702209 cites W2962793481 @default.
- W3191702209 cites W2963150697 @default.
- W3191702209 cites W2963691377 @default.
- W3191702209 cites W2963908753 @default.
- W3191702209 cites W2975885948 @default.
- W3191702209 cites W2980323948 @default.
- W3191702209 cites W2982147221 @default.
- W3191702209 cites W2986785750 @default.
- W3191702209 cites W2989769843 @default.
- W3191702209 cites W3030883634 @default.
- W3191702209 cites W3034739178 @default.
- W3191702209 cites W3082962134 @default.
- W3191702209 cites W3093276592 @default.
- W3191702209 cites W3097841683 @default.
- W3191702209 cites W3102474308 @default.
- W3191702209 cites W3120274550 @default.
- W3191702209 cites W3162830297 @default.
- W3191702209 doi "https://doi.org/10.1002/mp.15146" @default.
- W3191702209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34342878" @default.
- W3191702209 hasPublicationYear "2021" @default.
- W3191702209 type Work @default.
- W3191702209 sameAs 3191702209 @default.
- W3191702209 citedByCount "17" @default.
- W3191702209 countsByYear W31917022092022 @default.
- W3191702209 countsByYear W31917022092023 @default.
- W3191702209 crossrefType "journal-article" @default.
- W3191702209 hasAuthorship W3191702209A5009731683 @default.
- W3191702209 hasAuthorship W3191702209A5011903902 @default.
- W3191702209 hasAuthorship W3191702209A5026088869 @default.
- W3191702209 hasAuthorship W3191702209A5026661364 @default.
- W3191702209 hasAuthorship W3191702209A5030054597 @default.
- W3191702209 hasAuthorship W3191702209A5043052005 @default.
- W3191702209 hasAuthorship W3191702209A5049656223 @default.
- W3191702209 hasAuthorship W3191702209A5053851809 @default.
- W3191702209 hasAuthorship W3191702209A5078938291 @default.
- W3191702209 hasAuthorship W3191702209A5086616055 @default.
- W3191702209 hasConcept C105795698 @default.
- W3191702209 hasConcept C108583219 @default.
- W3191702209 hasConcept C122048520 @default.
- W3191702209 hasConcept C124504099 @default.
- W3191702209 hasConcept C126838900 @default.
- W3191702209 hasConcept C141071460 @default.
- W3191702209 hasConcept C141898687 @default.
- W3191702209 hasConcept C143409427 @default.
- W3191702209 hasConcept C153180895 @default.
- W3191702209 hasConcept C154945302 @default.
- W3191702209 hasConcept C163892561 @default.
- W3191702209 hasConcept C2989005 @default.
- W3191702209 hasConcept C3018411727 @default.
- W3191702209 hasConcept C33923547 @default.
- W3191702209 hasConcept C41008148 @default.
- W3191702209 hasConcept C71924100 @default.
- W3191702209 hasConcept C81363708 @default.
- W3191702209 hasConcept C89600930 @default.
- W3191702209 hasConceptScore W3191702209C105795698 @default.
- W3191702209 hasConceptScore W3191702209C108583219 @default.
- W3191702209 hasConceptScore W3191702209C122048520 @default.
- W3191702209 hasConceptScore W3191702209C124504099 @default.