Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191738981> ?p ?o ?g. }
- W3191738981 endingPage "7195" @default.
- W3191738981 startingPage "7195" @default.
- W3191738981 abstract "Ordered Weighted Averaging (OWA) operators have been integrated in Convolutional Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN integrate global information about the image in the early stages, where most CNN architectures only allow for the exploitation of local information. As a side effect of this integration, the OWA layer becomes a practical method for the determination of OWA operator weights, which is usually a difficult task that complicates the integration of these operators in other fields. In this paper, we explore the weights learned for the OWA operators inside the OWA layer, characterizing them through their basic properties of orness and dispersion. We also compare them to some families of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the exponential RIM OWA operator, finding examples that are currently impossible to generalize through these parameterizations." @default.
- W3191738981 created "2021-08-16" @default.
- W3191738981 creator A5027737844 @default.
- W3191738981 creator A5048848385 @default.
- W3191738981 creator A5074741708 @default.
- W3191738981 date "2021-08-04" @default.
- W3191738981 modified "2023-10-14" @default.
- W3191738981 title "A Study of OWA Operators Learned in Convolutional Neural Networks" @default.
- W3191738981 cites W1498436455 @default.
- W3191738981 cites W1905771608 @default.
- W3191738981 cites W1972978214 @default.
- W3191738981 cites W1991767773 @default.
- W3191738981 cites W1995875735 @default.
- W3191738981 cites W2023092195 @default.
- W3191738981 cites W2041806006 @default.
- W3191738981 cites W2045371359 @default.
- W3191738981 cites W2060907774 @default.
- W3191738981 cites W2073786842 @default.
- W3191738981 cites W2076428443 @default.
- W3191738981 cites W2087580945 @default.
- W3191738981 cites W2087991154 @default.
- W3191738981 cites W2091085232 @default.
- W3191738981 cites W2101926813 @default.
- W3191738981 cites W2103559027 @default.
- W3191738981 cites W2111211679 @default.
- W3191738981 cites W2112796928 @default.
- W3191738981 cites W2147595926 @default.
- W3191738981 cites W2147800946 @default.
- W3191738981 cites W2167853906 @default.
- W3191738981 cites W2194775991 @default.
- W3191738981 cites W2302255633 @default.
- W3191738981 cites W2588561483 @default.
- W3191738981 cites W2618530766 @default.
- W3191738981 cites W2801277493 @default.
- W3191738981 cites W2808436940 @default.
- W3191738981 cites W2810837521 @default.
- W3191738981 cites W2949186462 @default.
- W3191738981 cites W2961044008 @default.
- W3191738981 cites W2963446712 @default.
- W3191738981 cites W2979482047 @default.
- W3191738981 cites W3006436762 @default.
- W3191738981 cites W3040972549 @default.
- W3191738981 cites W3081937739 @default.
- W3191738981 cites W3102753903 @default.
- W3191738981 cites W3104934048 @default.
- W3191738981 cites W4232864890 @default.
- W3191738981 cites W4236702134 @default.
- W3191738981 cites W4244340606 @default.
- W3191738981 doi "https://doi.org/10.3390/app11167195" @default.
- W3191738981 hasPublicationYear "2021" @default.
- W3191738981 type Work @default.
- W3191738981 sameAs 3191738981 @default.
- W3191738981 citedByCount "3" @default.
- W3191738981 countsByYear W31917389812022 @default.
- W3191738981 crossrefType "journal-article" @default.
- W3191738981 hasAuthorship W3191738981A5027737844 @default.
- W3191738981 hasAuthorship W3191738981A5048848385 @default.
- W3191738981 hasAuthorship W3191738981A5074741708 @default.
- W3191738981 hasBestOaLocation W31917389811 @default.
- W3191738981 hasConcept C104317684 @default.
- W3191738981 hasConcept C105795698 @default.
- W3191738981 hasConcept C11413529 @default.
- W3191738981 hasConcept C115961682 @default.
- W3191738981 hasConcept C127413603 @default.
- W3191738981 hasConcept C153180895 @default.
- W3191738981 hasConcept C154945302 @default.
- W3191738981 hasConcept C158448853 @default.
- W3191738981 hasConcept C17020691 @default.
- W3191738981 hasConcept C178790620 @default.
- W3191738981 hasConcept C185592680 @default.
- W3191738981 hasConcept C201995342 @default.
- W3191738981 hasConcept C2779227376 @default.
- W3191738981 hasConcept C2780451532 @default.
- W3191738981 hasConcept C2781315470 @default.
- W3191738981 hasConcept C33923547 @default.
- W3191738981 hasConcept C41008148 @default.
- W3191738981 hasConcept C55493867 @default.
- W3191738981 hasConcept C81363708 @default.
- W3191738981 hasConcept C86339819 @default.
- W3191738981 hasConceptScore W3191738981C104317684 @default.
- W3191738981 hasConceptScore W3191738981C105795698 @default.
- W3191738981 hasConceptScore W3191738981C11413529 @default.
- W3191738981 hasConceptScore W3191738981C115961682 @default.
- W3191738981 hasConceptScore W3191738981C127413603 @default.
- W3191738981 hasConceptScore W3191738981C153180895 @default.
- W3191738981 hasConceptScore W3191738981C154945302 @default.
- W3191738981 hasConceptScore W3191738981C158448853 @default.
- W3191738981 hasConceptScore W3191738981C17020691 @default.
- W3191738981 hasConceptScore W3191738981C178790620 @default.
- W3191738981 hasConceptScore W3191738981C185592680 @default.
- W3191738981 hasConceptScore W3191738981C201995342 @default.
- W3191738981 hasConceptScore W3191738981C2779227376 @default.
- W3191738981 hasConceptScore W3191738981C2780451532 @default.
- W3191738981 hasConceptScore W3191738981C2781315470 @default.
- W3191738981 hasConceptScore W3191738981C33923547 @default.
- W3191738981 hasConceptScore W3191738981C41008148 @default.
- W3191738981 hasConceptScore W3191738981C55493867 @default.
- W3191738981 hasConceptScore W3191738981C81363708 @default.