Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191792867> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3191792867 abstract "The growth of the computer vision field with robust deep learning architectures has facilitated researchers to train them on high dimensional data such as multispectral and hyperspectral images. However, to train these networks we need large input annotated data. In classical problems such as land use, agriculture yield prediction, legacy image data play a vital role. Legacy image labeling requires manpower, expertise and time. The absence of essential information and the volume of these images aggravate the problem. To resolve this, we designed a pipelined architecture with an unsupervised learning algorithm over a legacy multispectral image with minimal information. An unsupervised learning algorithm, K-Means was applied to obtain clusters along with the Elbow method for analysis. Due to the absence of demographic information and necessary sensor data, visual cues were used to verify the obtained clusters. Manual versus automated results was verified and 85.7% accuracy was obtained." @default.
- W3191792867 created "2021-08-16" @default.
- W3191792867 creator A5006823780 @default.
- W3191792867 creator A5040479507 @default.
- W3191792867 creator A5061572554 @default.
- W3191792867 date "2021-06-25" @default.
- W3191792867 modified "2023-10-16" @default.
- W3191792867 title "PaLM: Pipelined Architecture to Label Legacy Multispectral Data using Unsupervised Learning Algorithm" @default.
- W3191792867 cites W1966979133 @default.
- W3191792867 cites W1992419399 @default.
- W3191792867 cites W2071949631 @default.
- W3191792867 cites W2128126485 @default.
- W3191792867 cites W2140405352 @default.
- W3191792867 cites W2140413822 @default.
- W3191792867 cites W2142458924 @default.
- W3191792867 cites W2167601989 @default.
- W3191792867 cites W2258789433 @default.
- W3191792867 cites W2760340275 @default.
- W3191792867 cites W2767410253 @default.
- W3191792867 cites W2803946774 @default.
- W3191792867 cites W2885020738 @default.
- W3191792867 cites W2896971046 @default.
- W3191792867 cites W2897983007 @default.
- W3191792867 cites W2949488362 @default.
- W3191792867 cites W2995187556 @default.
- W3191792867 cites W2996041315 @default.
- W3191792867 cites W2999729612 @default.
- W3191792867 cites W3009587349 @default.
- W3191792867 cites W3048804154 @default.
- W3191792867 doi "https://doi.org/10.1109/conit51480.2021.9498335" @default.
- W3191792867 hasPublicationYear "2021" @default.
- W3191792867 type Work @default.
- W3191792867 sameAs 3191792867 @default.
- W3191792867 citedByCount "0" @default.
- W3191792867 crossrefType "proceedings-article" @default.
- W3191792867 hasAuthorship W3191792867A5006823780 @default.
- W3191792867 hasAuthorship W3191792867A5040479507 @default.
- W3191792867 hasAuthorship W3191792867A5061572554 @default.
- W3191792867 hasConcept C119857082 @default.
- W3191792867 hasConcept C123657996 @default.
- W3191792867 hasConcept C142362112 @default.
- W3191792867 hasConcept C153180895 @default.
- W3191792867 hasConcept C153349607 @default.
- W3191792867 hasConcept C154945302 @default.
- W3191792867 hasConcept C159078339 @default.
- W3191792867 hasConcept C173163844 @default.
- W3191792867 hasConcept C202444582 @default.
- W3191792867 hasConcept C33923547 @default.
- W3191792867 hasConcept C41008148 @default.
- W3191792867 hasConcept C8038995 @default.
- W3191792867 hasConcept C9652623 @default.
- W3191792867 hasConceptScore W3191792867C119857082 @default.
- W3191792867 hasConceptScore W3191792867C123657996 @default.
- W3191792867 hasConceptScore W3191792867C142362112 @default.
- W3191792867 hasConceptScore W3191792867C153180895 @default.
- W3191792867 hasConceptScore W3191792867C153349607 @default.
- W3191792867 hasConceptScore W3191792867C154945302 @default.
- W3191792867 hasConceptScore W3191792867C159078339 @default.
- W3191792867 hasConceptScore W3191792867C173163844 @default.
- W3191792867 hasConceptScore W3191792867C202444582 @default.
- W3191792867 hasConceptScore W3191792867C33923547 @default.
- W3191792867 hasConceptScore W3191792867C41008148 @default.
- W3191792867 hasConceptScore W3191792867C8038995 @default.
- W3191792867 hasConceptScore W3191792867C9652623 @default.
- W3191792867 hasLocation W31917928671 @default.
- W3191792867 hasOpenAccess W3191792867 @default.
- W3191792867 hasPrimaryLocation W31917928671 @default.
- W3191792867 hasRelatedWork W1869808405 @default.
- W3191792867 hasRelatedWork W2028628118 @default.
- W3191792867 hasRelatedWork W2031007444 @default.
- W3191792867 hasRelatedWork W2775464024 @default.
- W3191792867 hasRelatedWork W2783789044 @default.
- W3191792867 hasRelatedWork W2972973180 @default.
- W3191792867 hasRelatedWork W3173596272 @default.
- W3191792867 hasRelatedWork W3211035526 @default.
- W3191792867 hasRelatedWork W4291701050 @default.
- W3191792867 hasRelatedWork W4293272463 @default.
- W3191792867 isParatext "false" @default.
- W3191792867 isRetracted "false" @default.
- W3191792867 magId "3191792867" @default.
- W3191792867 workType "article" @default.