Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191808428> ?p ?o ?g. }
- W3191808428 endingPage "7385" @default.
- W3191808428 startingPage "7373" @default.
- W3191808428 abstract "To reconstruct images with high spatial resolution and high spectral resolution, one of the most common methods is to fuse a low-resolution hyperspectral image (HSI) with a high-resolution (HR) multispectral image (MSI) of the same scene. Deep learning has been widely applied in the field of HSI-MSI fusion, which is limited with hardware. In order to break the limits, we construct an unsupervised multiattention-guided network named UMAG-Net without training data to better accomplish HSI-MSI fusion. UMAG-Net first extracts deep multiscale features of MSI by using a multiattention encoding network. Then, a loss function containing a pair of HSI and MSI is used to iteratively update parameters of UMAG-Net and learn prior knowledge of the fused image. Finally, a multiscale feature-guided network is constructed to generate an HR-HSI. The experimental results show the visual and quantitative superiority of the proposed method compared to other methods." @default.
- W3191808428 created "2021-08-16" @default.
- W3191808428 creator A5025970281 @default.
- W3191808428 creator A5031137983 @default.
- W3191808428 creator A5047332568 @default.
- W3191808428 creator A5071968752 @default.
- W3191808428 creator A5083581319 @default.
- W3191808428 creator A5089384363 @default.
- W3191808428 date "2021-01-01" @default.
- W3191808428 modified "2023-10-16" @default.
- W3191808428 title "UMAG-Net: A New Unsupervised Multiattention-Guided Network for Hyperspectral and Multispectral Image Fusion" @default.
- W3191808428 cites W1495168473 @default.
- W3191808428 cites W1990231296 @default.
- W3191808428 cites W2012946078 @default.
- W3191808428 cites W2040078680 @default.
- W3191808428 cites W2074126754 @default.
- W3191808428 cites W2078125016 @default.
- W3191808428 cites W2100109944 @default.
- W3191808428 cites W2133665775 @default.
- W3191808428 cites W2135364872 @default.
- W3191808428 cites W2159269332 @default.
- W3191808428 cites W2171108951 @default.
- W3191808428 cites W2327302159 @default.
- W3191808428 cites W2344025572 @default.
- W3191808428 cites W2523210664 @default.
- W3191808428 cites W2606306511 @default.
- W3191808428 cites W2743618639 @default.
- W3191808428 cites W2748530166 @default.
- W3191808428 cites W2773041763 @default.
- W3191808428 cites W2776456086 @default.
- W3191808428 cites W2792111852 @default.
- W3191808428 cites W2794299626 @default.
- W3191808428 cites W2804744787 @default.
- W3191808428 cites W2887210918 @default.
- W3191808428 cites W2902746003 @default.
- W3191808428 cites W2910457605 @default.
- W3191808428 cites W2945202593 @default.
- W3191808428 cites W2954661277 @default.
- W3191808428 cites W2963091558 @default.
- W3191808428 cites W2977355106 @default.
- W3191808428 cites W2982374186 @default.
- W3191808428 cites W2990162903 @default.
- W3191808428 cites W2994639710 @default.
- W3191808428 cites W3004925702 @default.
- W3191808428 cites W3040988483 @default.
- W3191808428 cites W3047443805 @default.
- W3191808428 cites W3048631361 @default.
- W3191808428 cites W3096812112 @default.
- W3191808428 cites W3097353710 @default.
- W3191808428 cites W3099843321 @default.
- W3191808428 cites W3100714546 @default.
- W3191808428 cites W3101012758 @default.
- W3191808428 cites W3105021316 @default.
- W3191808428 cites W3140885850 @default.
- W3191808428 doi "https://doi.org/10.1109/jstars.2021.3097178" @default.
- W3191808428 hasPublicationYear "2021" @default.
- W3191808428 type Work @default.
- W3191808428 sameAs 3191808428 @default.
- W3191808428 citedByCount "16" @default.
- W3191808428 countsByYear W31918084282021 @default.
- W3191808428 countsByYear W31918084282022 @default.
- W3191808428 countsByYear W31918084282023 @default.
- W3191808428 crossrefType "journal-article" @default.
- W3191808428 hasAuthorship W3191808428A5025970281 @default.
- W3191808428 hasAuthorship W3191808428A5031137983 @default.
- W3191808428 hasAuthorship W3191808428A5047332568 @default.
- W3191808428 hasAuthorship W3191808428A5071968752 @default.
- W3191808428 hasAuthorship W3191808428A5083581319 @default.
- W3191808428 hasAuthorship W3191808428A5089384363 @default.
- W3191808428 hasBestOaLocation W31918084281 @default.
- W3191808428 hasConcept C108583219 @default.
- W3191808428 hasConcept C115961682 @default.
- W3191808428 hasConcept C119599485 @default.
- W3191808428 hasConcept C127413603 @default.
- W3191808428 hasConcept C138885662 @default.
- W3191808428 hasConcept C141353440 @default.
- W3191808428 hasConcept C153180895 @default.
- W3191808428 hasConcept C154945302 @default.
- W3191808428 hasConcept C158525013 @default.
- W3191808428 hasConcept C159078339 @default.
- W3191808428 hasConcept C173163844 @default.
- W3191808428 hasConcept C205372480 @default.
- W3191808428 hasConcept C2776401178 @default.
- W3191808428 hasConcept C31972630 @default.
- W3191808428 hasConcept C41008148 @default.
- W3191808428 hasConcept C41895202 @default.
- W3191808428 hasConcept C52622490 @default.
- W3191808428 hasConcept C69744172 @default.
- W3191808428 hasConceptScore W3191808428C108583219 @default.
- W3191808428 hasConceptScore W3191808428C115961682 @default.
- W3191808428 hasConceptScore W3191808428C119599485 @default.
- W3191808428 hasConceptScore W3191808428C127413603 @default.
- W3191808428 hasConceptScore W3191808428C138885662 @default.
- W3191808428 hasConceptScore W3191808428C141353440 @default.
- W3191808428 hasConceptScore W3191808428C153180895 @default.
- W3191808428 hasConceptScore W3191808428C154945302 @default.
- W3191808428 hasConceptScore W3191808428C158525013 @default.
- W3191808428 hasConceptScore W3191808428C159078339 @default.