Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191820010> ?p ?o ?g. }
- W3191820010 endingPage "103592" @default.
- W3191820010 startingPage "103592" @default.
- W3191820010 abstract "The end Permian mass extinction (EPME) is the greatest among the “Big Five” extinctions of the Phanerozoic, and is believed to have been triggered primarily by the Siberian Traps Large Igneous Province (STLIP). This hypothesis is supported by the temporal correlation of STLIP with the EPME by radiometric ages and Hg enrichments in sedimentary rocks. However, how signatures of volcanic Hg emissions are preserved in sediments, and how this may vary from deep basin to shelf to terrestrial successions, remain unclear. To examine variability in the Hg record in different environments, we systematically measured organic carbon isotopes, Hg concentrations and isotopes, major elements, and total organic carbon (TOC) contents from: 1) a terrestrial section at Chahe, 2) a marine-nonmarine transitional section at Jinzhong both in Guizhou Province, Southwest China. Results show that Hg versus TOC and Hg versus Al exhibit no correlation through the terrestrial section at Chahe, whereas there is positive correlation in the transitional Jinzhong section. These relationships indicate that organic matter and clay minerals would not affect Hg fluctuations on land, but dominates Hg sequestration in transitional settings. Thus, Hg/TOC along with Hg/Al ratios were able to be employed to recognize abnormal Hg deposition in Jinzhong, and Hg concentrations were utilized to examine records of Hg enrichments in Chahe. The studied sections all show synchronous changes between carbon isotopic perturbations and Hg deposition events with first Hg enrichment and associated negative carbon isotopic negative excursion coinciding with terrestrial ecological disturbance and with a second Hg enrichment corresponding to the largest carbon isotopic negative excursion and marine biological crisis. These trends across the Permian-Triassic boundary are also observed in other 13 sections around the world, indicating a common source that injected massive CO 2 and Hg, impacting the global C and Hg cycles. Hg isotope (Δ 199 Hg values) of the first peak in Hg concentrations have similar characteristics in the terrestrial Chahe and transitional Jinzhong sections along with other sections (e.g., Shangsi and Chaohu in South China, Guryul Ravine section in India and Buchanan Lake section in Canada), all showing positive values, indicative of predominantly atmospheric-derived volcanic Hg. In contrast, Δ 199 Hg values at the second Hg peak, corresponding to the marine extinction horizon in Chahe and Jinzhong, are negative. This relationship indicates an elevated involvement of terrestrial sourced Hg into the terrestrial or nearshore aquatic realm due to increased weathering after the collapse of terrestrial ecosystem. Our study suggests that the STLIP could have two pulses of volatile eruptions that released massive CO 2 and Hg, resulting in two pulses of Hg enrichments coupled with negative carbon isotopic excursions coinciding with end Permian terrestrial and marine extinction events. • Two pulses of Hg enrichments coinciding with the end Permian terrestrial and marine extinction events • Positive Δ 199 Hg values at the first Hg enrichment, indicate a predominant atmospheric-derived signature of volcanic Hg • Δ 199 Hg values at the second Hg peak are negative, indicating an elevated involvement of terrestrial sourced Hg." @default.
- W3191820010 created "2021-08-16" @default.
- W3191820010 creator A5010477526 @default.
- W3191820010 creator A5010921521 @default.
- W3191820010 creator A5018870681 @default.
- W3191820010 creator A5020407181 @default.
- W3191820010 creator A5052830364 @default.
- W3191820010 creator A5054451564 @default.
- W3191820010 creator A5062385838 @default.
- W3191820010 date "2021-10-01" @default.
- W3191820010 modified "2023-10-16" @default.
- W3191820010 title "Characteristics of Hg concentrations and isotopes in terrestrial and marine facies across the end-Permian mass extinction" @default.
- W3191820010 cites W1538161997 @default.
- W3191820010 cites W1770113505 @default.
- W3191820010 cites W1966572506 @default.
- W3191820010 cites W1971230551 @default.
- W3191820010 cites W1974970149 @default.
- W3191820010 cites W1982093108 @default.
- W3191820010 cites W1983335280 @default.
- W3191820010 cites W1985604629 @default.
- W3191820010 cites W1986516591 @default.
- W3191820010 cites W1993454441 @default.
- W3191820010 cites W1993570908 @default.
- W3191820010 cites W1998963014 @default.
- W3191820010 cites W2004305320 @default.
- W3191820010 cites W2006956135 @default.
- W3191820010 cites W2007156274 @default.
- W3191820010 cites W2011947668 @default.
- W3191820010 cites W2012962677 @default.
- W3191820010 cites W2020154685 @default.
- W3191820010 cites W2036131614 @default.
- W3191820010 cites W2042274367 @default.
- W3191820010 cites W2053080100 @default.
- W3191820010 cites W2063948515 @default.
- W3191820010 cites W2066860143 @default.
- W3191820010 cites W2073560578 @default.
- W3191820010 cites W2074939849 @default.
- W3191820010 cites W2078542443 @default.
- W3191820010 cites W2079852953 @default.
- W3191820010 cites W2083176686 @default.
- W3191820010 cites W2098293862 @default.
- W3191820010 cites W2099105183 @default.
- W3191820010 cites W2109960660 @default.
- W3191820010 cites W2114710766 @default.
- W3191820010 cites W2118691770 @default.
- W3191820010 cites W2133829971 @default.
- W3191820010 cites W2138746313 @default.
- W3191820010 cites W2160118267 @default.
- W3191820010 cites W2191926941 @default.
- W3191820010 cites W2198101982 @default.
- W3191820010 cites W2206804843 @default.
- W3191820010 cites W2228461447 @default.
- W3191820010 cites W2282217899 @default.
- W3191820010 cites W2316816482 @default.
- W3191820010 cites W2316952183 @default.
- W3191820010 cites W2318231914 @default.
- W3191820010 cites W2329965085 @default.
- W3191820010 cites W2396016288 @default.
- W3191820010 cites W2525934856 @default.
- W3191820010 cites W2527195914 @default.
- W3191820010 cites W2550343609 @default.
- W3191820010 cites W2552047291 @default.
- W3191820010 cites W2567656277 @default.
- W3191820010 cites W2572962561 @default.
- W3191820010 cites W2584735945 @default.
- W3191820010 cites W2585645412 @default.
- W3191820010 cites W2602434750 @default.
- W3191820010 cites W2611114458 @default.
- W3191820010 cites W2638928691 @default.
- W3191820010 cites W2732331010 @default.
- W3191820010 cites W2737540514 @default.
- W3191820010 cites W2740829514 @default.
- W3191820010 cites W2766870549 @default.
- W3191820010 cites W2801345300 @default.
- W3191820010 cites W2806770328 @default.
- W3191820010 cites W2903057879 @default.
- W3191820010 cites W2905112325 @default.
- W3191820010 cites W2913368254 @default.
- W3191820010 cites W2918775417 @default.
- W3191820010 cites W2929626496 @default.
- W3191820010 cites W2951618739 @default.
- W3191820010 cites W2975949858 @default.
- W3191820010 cites W2991293197 @default.
- W3191820010 cites W2995518230 @default.
- W3191820010 cites W2999234322 @default.
- W3191820010 cites W3012674237 @default.
- W3191820010 cites W3026447126 @default.
- W3191820010 cites W3034945503 @default.
- W3191820010 cites W3095662282 @default.
- W3191820010 cites W3097182955 @default.
- W3191820010 cites W3111957921 @default.
- W3191820010 cites W370006220 @default.
- W3191820010 doi "https://doi.org/10.1016/j.gloplacha.2021.103592" @default.
- W3191820010 hasPublicationYear "2021" @default.
- W3191820010 type Work @default.
- W3191820010 sameAs 3191820010 @default.
- W3191820010 citedByCount "8" @default.
- W3191820010 countsByYear W31918200102022 @default.