Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191877600> ?p ?o ?g. }
- W3191877600 abstract "Wastewater-based surveillance has gained prominence and come to the forefront as a leading indicator of forecasting COVID-19 (coronavirus disease 2019) infection dynamics owing to its cost-effectiveness and its ability to inform early public health interventions. A university campus could especially benefit from wastewater surveillance, as universities are characterized by largely asymptomatic populations and are potential hot spots for transmission that necessitate frequent diagnostic testing. In this study, we employed a large-scale GIS (geographic information systems)-enabled building-level wastewater monitoring system associated with the on-campus residences of 7,614 individuals. Sixty-eight automated wastewater samplers were deployed to monitor 239 campus buildings with a focus on residential buildings. Time-weighted composite samples were collected on a daily basis and analyzed on the same day. Sample processing was streamlined significantly through automation, reducing the turnaround time by 20-fold and exceeding the scale of similar surveillance programs by 10- to 100-fold, thereby overcoming one of the biggest bottlenecks in wastewater surveillance. An automated wastewater notification system was developed to alert residents to a positive wastewater sample associated with their residence and to encourage uptake of campus-provided asymptomatic testing at no charge. This system, integrated with the rest of the Return to Learn program at the University of California (UC) San Diego-led to the early diagnosis of nearly 85% of all COVID-19 cases on campus. COVID-19 testing rates increased by 1.9 to 13× following wastewater notifications. Our study shows the potential for a robust, efficient wastewater surveillance system to greatly reduce infection risk as college campuses and other high-risk environments reopen. IMPORTANCE Wastewater-based epidemiology can be particularly valuable at university campuses where high-resolution spatial sampling in a well-controlled context could not only provide insight into what affects campus community as well as how those inferences can be extended to a broader city/county context. In the present study, a large-scale wastewater surveillance was successfully implemented on a large university campus enabling early detection of 85% of COVID-19 cases thereby averting potential outbreaks. The highly automated sample processing to reporting system enabled dramatic reduction in the turnaround time to 5 h (sample to result time) for 96 samples. Furthermore, miniaturization of the sample processing pipeline brought down the processing cost significantly ($13/sample). Taken together, these results show that such a system could greatly ameliorate long-term surveillance on such communities as they look to reopen." @default.
- W3191877600 created "2021-08-16" @default.
- W3191877600 creator A5002616190 @default.
- W3191877600 creator A5005255843 @default.
- W3191877600 creator A5007542787 @default.
- W3191877600 creator A5013800187 @default.
- W3191877600 creator A5022461817 @default.
- W3191877600 creator A5033881627 @default.
- W3191877600 creator A5039202077 @default.
- W3191877600 creator A5039234437 @default.
- W3191877600 creator A5042979343 @default.
- W3191877600 creator A5045050293 @default.
- W3191877600 creator A5059310658 @default.
- W3191877600 creator A5060643287 @default.
- W3191877600 creator A5064267152 @default.
- W3191877600 creator A5065368391 @default.
- W3191877600 creator A5072839298 @default.
- W3191877600 creator A5087126302 @default.
- W3191877600 date "2021-08-31" @default.
- W3191877600 modified "2023-10-12" @default.
- W3191877600 title "Rapid, Large-Scale Wastewater Surveillance and Automated Reporting System Enable Early Detection of Nearly 85% of COVID-19 Cases on a University Campus" @default.
- W3191877600 cites W2135983085 @default.
- W3191877600 cites W3014221525 @default.
- W3191877600 cites W3016746341 @default.
- W3191877600 cites W3046859241 @default.
- W3191877600 cites W3087196161 @default.
- W3191877600 cites W3087611057 @default.
- W3191877600 cites W3118151404 @default.
- W3191877600 cites W3125190111 @default.
- W3191877600 cites W3134045318 @default.
- W3191877600 cites W3136522233 @default.
- W3191877600 cites W3152222488 @default.
- W3191877600 cites W3159176248 @default.
- W3191877600 doi "https://doi.org/10.1128/msystems.00793-21" @default.
- W3191877600 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8409724" @default.
- W3191877600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34374562" @default.
- W3191877600 hasPublicationYear "2021" @default.
- W3191877600 type Work @default.
- W3191877600 sameAs 3191877600 @default.
- W3191877600 citedByCount "82" @default.
- W3191877600 countsByYear W31918776002021 @default.
- W3191877600 countsByYear W31918776002022 @default.
- W3191877600 countsByYear W31918776002023 @default.
- W3191877600 crossrefType "journal-article" @default.
- W3191877600 hasAuthorship W3191877600A5002616190 @default.
- W3191877600 hasAuthorship W3191877600A5005255843 @default.
- W3191877600 hasAuthorship W3191877600A5007542787 @default.
- W3191877600 hasAuthorship W3191877600A5013800187 @default.
- W3191877600 hasAuthorship W3191877600A5022461817 @default.
- W3191877600 hasAuthorship W3191877600A5033881627 @default.
- W3191877600 hasAuthorship W3191877600A5039202077 @default.
- W3191877600 hasAuthorship W3191877600A5039234437 @default.
- W3191877600 hasAuthorship W3191877600A5042979343 @default.
- W3191877600 hasAuthorship W3191877600A5045050293 @default.
- W3191877600 hasAuthorship W3191877600A5059310658 @default.
- W3191877600 hasAuthorship W3191877600A5060643287 @default.
- W3191877600 hasAuthorship W3191877600A5064267152 @default.
- W3191877600 hasAuthorship W3191877600A5065368391 @default.
- W3191877600 hasAuthorship W3191877600A5072839298 @default.
- W3191877600 hasAuthorship W3191877600A5087126302 @default.
- W3191877600 hasBestOaLocation W31918776001 @default.
- W3191877600 hasConcept C127413603 @default.
- W3191877600 hasConcept C142724271 @default.
- W3191877600 hasConcept C144024400 @default.
- W3191877600 hasConcept C149923435 @default.
- W3191877600 hasConcept C176553487 @default.
- W3191877600 hasConcept C21547014 @default.
- W3191877600 hasConcept C2776269092 @default.
- W3191877600 hasConcept C2779134260 @default.
- W3191877600 hasConcept C3008058167 @default.
- W3191877600 hasConcept C39432304 @default.
- W3191877600 hasConcept C524204448 @default.
- W3191877600 hasConcept C71924100 @default.
- W3191877600 hasConcept C87717796 @default.
- W3191877600 hasConcept C94061648 @default.
- W3191877600 hasConcept C99454951 @default.
- W3191877600 hasConceptScore W3191877600C127413603 @default.
- W3191877600 hasConceptScore W3191877600C142724271 @default.
- W3191877600 hasConceptScore W3191877600C144024400 @default.
- W3191877600 hasConceptScore W3191877600C149923435 @default.
- W3191877600 hasConceptScore W3191877600C176553487 @default.
- W3191877600 hasConceptScore W3191877600C21547014 @default.
- W3191877600 hasConceptScore W3191877600C2776269092 @default.
- W3191877600 hasConceptScore W3191877600C2779134260 @default.
- W3191877600 hasConceptScore W3191877600C3008058167 @default.
- W3191877600 hasConceptScore W3191877600C39432304 @default.
- W3191877600 hasConceptScore W3191877600C524204448 @default.
- W3191877600 hasConceptScore W3191877600C71924100 @default.
- W3191877600 hasConceptScore W3191877600C87717796 @default.
- W3191877600 hasConceptScore W3191877600C94061648 @default.
- W3191877600 hasConceptScore W3191877600C99454951 @default.
- W3191877600 hasFunder F4320332603 @default.
- W3191877600 hasIssue "4" @default.
- W3191877600 hasLocation W31918776001 @default.
- W3191877600 hasLocation W31918776002 @default.
- W3191877600 hasLocation W31918776003 @default.
- W3191877600 hasLocation W31918776004 @default.
- W3191877600 hasLocation W31918776005 @default.
- W3191877600 hasLocation W31918776006 @default.
- W3191877600 hasOpenAccess W3191877600 @default.