Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191900174> ?p ?o ?g. }
- W3191900174 endingPage "14" @default.
- W3191900174 startingPage "1" @default.
- W3191900174 abstract "In this article, we present GCN-Denoiser, a novel feature-preserving mesh denoising method based on graph convolutional networks ( GCNs ). Unlike previous learning-based mesh denoising methods that exploit handcrafted or voxel-based representations for feature learning, our method explores the structure of a triangular mesh itself and introduces a graph representation followed by graph convolution operations in the dual space of triangles. We show such a graph representation naturally captures the geometry features while being lightweight for both training and inference. To facilitate effective feature learning, our network exploits both static and dynamic edge convolutions, which allow us to learn information from both the explicit mesh structure and potential implicit relations among unconnected neighbors. To better approximate an unknown noise function, we introduce a cascaded optimization paradigm to progressively regress the noise-free facet normals with multiple GCNs. GCN-Denoiser achieves the new state-of-the-art results in multiple noise datasets, including CAD models often containing sharp features and raw scan models with real noise captured from different devices. We also create a new dataset called PrintData containing 20 real scans with their corresponding ground-truth meshes for the research community. Our code and data are available at https://github.com/Jhonve/GCN-Denoiser." @default.
- W3191900174 created "2021-08-16" @default.
- W3191900174 creator A5008384374 @default.
- W3191900174 creator A5008766810 @default.
- W3191900174 creator A5020952677 @default.
- W3191900174 creator A5034893385 @default.
- W3191900174 creator A5061986862 @default.
- W3191900174 creator A5069858651 @default.
- W3191900174 creator A5076768386 @default.
- W3191900174 creator A5088950452 @default.
- W3191900174 date "2022-02-09" @default.
- W3191900174 modified "2023-10-06" @default.
- W3191900174 title "GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks" @default.
- W3191900174 cites W1974582493 @default.
- W3191900174 cites W1985527876 @default.
- W3191900174 cites W1987648924 @default.
- W3191900174 cites W2016533289 @default.
- W3191900174 cites W2019032869 @default.
- W3191900174 cites W2042460596 @default.
- W3191900174 cites W2048427115 @default.
- W3191900174 cites W2066822731 @default.
- W3191900174 cites W2092785747 @default.
- W3191900174 cites W2097869901 @default.
- W3191900174 cites W2105960593 @default.
- W3191900174 cites W2110600113 @default.
- W3191900174 cites W2112696958 @default.
- W3191900174 cites W2116014169 @default.
- W3191900174 cites W2125065112 @default.
- W3191900174 cites W2153606377 @default.
- W3191900174 cites W2163387104 @default.
- W3191900174 cites W2508457857 @default.
- W3191900174 cites W2551040565 @default.
- W3191900174 cites W2574952845 @default.
- W3191900174 cites W2606202972 @default.
- W3191900174 cites W2891396148 @default.
- W3191900174 cites W2895494475 @default.
- W3191900174 cites W2898167198 @default.
- W3191900174 cites W2902078856 @default.
- W3191900174 cites W2963021451 @default.
- W3191900174 cites W2963556120 @default.
- W3191900174 cites W2969633497 @default.
- W3191900174 cites W2979750740 @default.
- W3191900174 cites W2982024564 @default.
- W3191900174 cites W2988577506 @default.
- W3191900174 cites W2990045899 @default.
- W3191900174 cites W2998590421 @default.
- W3191900174 cites W3035472394 @default.
- W3191900174 cites W3035515538 @default.
- W3191900174 cites W3104141662 @default.
- W3191900174 cites W4239395373 @default.
- W3191900174 cites W4242723867 @default.
- W3191900174 doi "https://doi.org/10.1145/3480168" @default.
- W3191900174 hasPublicationYear "2022" @default.
- W3191900174 type Work @default.
- W3191900174 sameAs 3191900174 @default.
- W3191900174 citedByCount "9" @default.
- W3191900174 countsByYear W31919001742022 @default.
- W3191900174 countsByYear W31919001742023 @default.
- W3191900174 crossrefType "journal-article" @default.
- W3191900174 hasAuthorship W3191900174A5008384374 @default.
- W3191900174 hasAuthorship W3191900174A5008766810 @default.
- W3191900174 hasAuthorship W3191900174A5020952677 @default.
- W3191900174 hasAuthorship W3191900174A5034893385 @default.
- W3191900174 hasAuthorship W3191900174A5061986862 @default.
- W3191900174 hasAuthorship W3191900174A5069858651 @default.
- W3191900174 hasAuthorship W3191900174A5076768386 @default.
- W3191900174 hasAuthorship W3191900174A5088950452 @default.
- W3191900174 hasBestOaLocation W31919001742 @default.
- W3191900174 hasConcept C11413529 @default.
- W3191900174 hasConcept C121684516 @default.
- W3191900174 hasConcept C132525143 @default.
- W3191900174 hasConcept C138885662 @default.
- W3191900174 hasConcept C153180895 @default.
- W3191900174 hasConcept C154945302 @default.
- W3191900174 hasConcept C163294075 @default.
- W3191900174 hasConcept C165696696 @default.
- W3191900174 hasConcept C2776214188 @default.
- W3191900174 hasConcept C2776401178 @default.
- W3191900174 hasConcept C31487907 @default.
- W3191900174 hasConcept C38652104 @default.
- W3191900174 hasConcept C41008148 @default.
- W3191900174 hasConcept C41895202 @default.
- W3191900174 hasConcept C59404180 @default.
- W3191900174 hasConcept C80444323 @default.
- W3191900174 hasConcept C81363708 @default.
- W3191900174 hasConceptScore W3191900174C11413529 @default.
- W3191900174 hasConceptScore W3191900174C121684516 @default.
- W3191900174 hasConceptScore W3191900174C132525143 @default.
- W3191900174 hasConceptScore W3191900174C138885662 @default.
- W3191900174 hasConceptScore W3191900174C153180895 @default.
- W3191900174 hasConceptScore W3191900174C154945302 @default.
- W3191900174 hasConceptScore W3191900174C163294075 @default.
- W3191900174 hasConceptScore W3191900174C165696696 @default.
- W3191900174 hasConceptScore W3191900174C2776214188 @default.
- W3191900174 hasConceptScore W3191900174C2776401178 @default.
- W3191900174 hasConceptScore W3191900174C31487907 @default.
- W3191900174 hasConceptScore W3191900174C38652104 @default.
- W3191900174 hasConceptScore W3191900174C41008148 @default.