Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191925787> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3191925787 abstract "Malnutrition represents a major public health con-cern worldwide, and it particularly harms older adults since it is frequently associated with several chronic health disorders. It significantly increases in institutionalised subjects, especially in presence of cognitive impairments. For this reason, it is essential to early detect nutritional deficiencies and unhealthy dietary habits and to timely trigger proper feedback and interventions. Malnutrition assessment in clinical settings is generally based on standard screening tools including questionnaires, rating scales, and biometrics. Technological solutions based on IoT and mobile devices, along with AI techniques for data analysis, could provide important advantages in the risk assessment and prevention. In this paper we present a Decision Support System for the early detection of malnutrition risk based on data collected by a m-health application for nutritional and body composition monitoring. The application has been in use in a nursing home in Italy from March 2018 and, considering drop-outs and the impact of Covid-19 pandemic, we have been able to collect consistent data over three different trial periods. In collaboration with a medical specialist, we performed feature engineering to estimate daily intake for the major food components, meal completeness, variability, considering also physiological data. Then, we ran several Machine Learning models using the results of Mini Nutritional Assessment rating scale as ground truth, and applying SMOTE and cost-sensitive learning to deal with the dataset imbalance. Obtained results indicate that the best performing ML models for malnutrition risk prediction reach median accuracy and recall values of 94% and 92%, respectively." @default.
- W3191925787 created "2021-08-16" @default.
- W3191925787 creator A5019193008 @default.
- W3191925787 creator A5040973120 @default.
- W3191925787 creator A5048866658 @default.
- W3191925787 date "2021-06-01" @default.
- W3191925787 modified "2023-09-23" @default.
- W3191925787 title "Malnutrition Risk Assessment in Frail Older Adults using m-Health and Machine Learning" @default.
- W3191925787 cites W2084847631 @default.
- W3191925787 cites W2116790911 @default.
- W3191925787 cites W2148143831 @default.
- W3191925787 cites W2560576658 @default.
- W3191925787 cites W2585425668 @default.
- W3191925787 cites W2601596134 @default.
- W3191925787 cites W2784325276 @default.
- W3191925787 cites W2848115348 @default.
- W3191925787 cites W2896480277 @default.
- W3191925787 cites W2906841859 @default.
- W3191925787 cites W2908533381 @default.
- W3191925787 cites W3016895531 @default.
- W3191925787 cites W3025983928 @default.
- W3191925787 cites W341904376 @default.
- W3191925787 doi "https://doi.org/10.1109/icc42927.2021.9500471" @default.
- W3191925787 hasPublicationYear "2021" @default.
- W3191925787 type Work @default.
- W3191925787 sameAs 3191925787 @default.
- W3191925787 citedByCount "1" @default.
- W3191925787 countsByYear W31919257872022 @default.
- W3191925787 crossrefType "proceedings-article" @default.
- W3191925787 hasAuthorship W3191925787A5019193008 @default.
- W3191925787 hasAuthorship W3191925787A5040973120 @default.
- W3191925787 hasAuthorship W3191925787A5048866658 @default.
- W3191925787 hasConcept C119857082 @default.
- W3191925787 hasConcept C12174686 @default.
- W3191925787 hasConcept C142724271 @default.
- W3191925787 hasConcept C154945302 @default.
- W3191925787 hasConcept C159110408 @default.
- W3191925787 hasConcept C27415008 @default.
- W3191925787 hasConcept C38652104 @default.
- W3191925787 hasConcept C41008148 @default.
- W3191925787 hasConcept C551997983 @default.
- W3191925787 hasConcept C71924100 @default.
- W3191925787 hasConcept C74909509 @default.
- W3191925787 hasConcept C99454951 @default.
- W3191925787 hasConceptScore W3191925787C119857082 @default.
- W3191925787 hasConceptScore W3191925787C12174686 @default.
- W3191925787 hasConceptScore W3191925787C142724271 @default.
- W3191925787 hasConceptScore W3191925787C154945302 @default.
- W3191925787 hasConceptScore W3191925787C159110408 @default.
- W3191925787 hasConceptScore W3191925787C27415008 @default.
- W3191925787 hasConceptScore W3191925787C38652104 @default.
- W3191925787 hasConceptScore W3191925787C41008148 @default.
- W3191925787 hasConceptScore W3191925787C551997983 @default.
- W3191925787 hasConceptScore W3191925787C71924100 @default.
- W3191925787 hasConceptScore W3191925787C74909509 @default.
- W3191925787 hasConceptScore W3191925787C99454951 @default.
- W3191925787 hasFunder F4320320300 @default.
- W3191925787 hasLocation W31919257871 @default.
- W3191925787 hasOpenAccess W3191925787 @default.
- W3191925787 hasPrimaryLocation W31919257871 @default.
- W3191925787 hasRelatedWork W2748952813 @default.
- W3191925787 hasRelatedWork W2767016450 @default.
- W3191925787 hasRelatedWork W2899084033 @default.
- W3191925787 hasRelatedWork W2961085424 @default.
- W3191925787 hasRelatedWork W4236946757 @default.
- W3191925787 hasRelatedWork W4285260836 @default.
- W3191925787 hasRelatedWork W4286629047 @default.
- W3191925787 hasRelatedWork W4306321456 @default.
- W3191925787 hasRelatedWork W4306674287 @default.
- W3191925787 hasRelatedWork W4224009465 @default.
- W3191925787 isParatext "false" @default.
- W3191925787 isRetracted "false" @default.
- W3191925787 magId "3191925787" @default.
- W3191925787 workType "article" @default.