Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191987636> ?p ?o ?g. }
- W3191987636 endingPage "131684" @default.
- W3191987636 startingPage "131684" @default.
- W3191987636 abstract "The heavy metal accumulated biomass after phytoremediation needs to be decontaminated before disposal. Liquid extraction is commonly used to remove and recycle toxic heavy metals from contaminated biomass. In this study, we examined the cadmium (Cd) removal efficiency using different chemical reagents (hydrochloric acid, nitric acid, sulfuric acid, and ethylenediaminetetraacetic acid disodium) of the post-harvest Amaranthus hypochondriacus L. biomass. The purifications for the extracted liquids and ecological risk assessments for the extracted residues were also investigated. We have found that 77.8% of Cd in stems and 62.1% of Cd in leaves were removed by 0.25 M HCl after 24 h. In addition, K2CO3, KOH, and 4 Å molecular sieve could remove ≥89.0% of Cd in the extracted liquids. Finally, after we returned the extracted residues to the earthworm-incubated soil, the extracted biomass negatively affected the growth (weight loss ≥ 11.0%) and survival (mortality ≥ 33.3%) of Eisenia fetida. It should be noted that earthworms decreased soil available Cd concentrations from 0.14–0.05 mg kg−1 to 0.11–0.04 mg kg−1 and offset the negative effects of the Cd-contaminated biomass on soil microbes. Overall, given the cost of reagents, the Cd removal efficiency, and the ecological risks of the extracted biomass, using 0.25 M HCl for liquid extraction and K2CO3 for purification should be recommended. This work highlights the potential of liquid extraction for immediately and directly removing the Cd from fresh contaminated accumulator biomass and the resource cycling potential of the extracted liquids and biomass after purification." @default.
- W3191987636 created "2021-08-16" @default.
- W3191987636 creator A5010496720 @default.
- W3191987636 creator A5023846448 @default.
- W3191987636 creator A5027122519 @default.
- W3191987636 creator A5032451510 @default.
- W3191987636 creator A5037556981 @default.
- W3191987636 creator A5047036161 @default.
- W3191987636 creator A5056276396 @default.
- W3191987636 creator A5081657807 @default.
- W3191987636 creator A5084575850 @default.
- W3191987636 date "2022-01-01" @default.
- W3191987636 modified "2023-10-02" @default.
- W3191987636 title "The cadmium decontamination and disposal of the harvested cadmium accumulator Amaranthus hypochondriacus L." @default.
- W3191987636 cites W1979915077 @default.
- W3191987636 cites W1992915840 @default.
- W3191987636 cites W1992999989 @default.
- W3191987636 cites W1994699427 @default.
- W3191987636 cites W2001481319 @default.
- W3191987636 cites W2007370078 @default.
- W3191987636 cites W2010248258 @default.
- W3191987636 cites W2014082340 @default.
- W3191987636 cites W2015937341 @default.
- W3191987636 cites W2028616962 @default.
- W3191987636 cites W2031062728 @default.
- W3191987636 cites W2040699555 @default.
- W3191987636 cites W2055364929 @default.
- W3191987636 cites W2084451004 @default.
- W3191987636 cites W2097856652 @default.
- W3191987636 cites W2141109221 @default.
- W3191987636 cites W2166636349 @default.
- W3191987636 cites W2271885425 @default.
- W3191987636 cites W2462120700 @default.
- W3191987636 cites W2495012329 @default.
- W3191987636 cites W2607017817 @default.
- W3191987636 cites W2649921188 @default.
- W3191987636 cites W269086806 @default.
- W3191987636 cites W2739372311 @default.
- W3191987636 cites W2743124859 @default.
- W3191987636 cites W2770385631 @default.
- W3191987636 cites W2780830309 @default.
- W3191987636 cites W2790071865 @default.
- W3191987636 cites W2791722540 @default.
- W3191987636 cites W2795147699 @default.
- W3191987636 cites W2799721933 @default.
- W3191987636 cites W2833138892 @default.
- W3191987636 cites W2889948618 @default.
- W3191987636 cites W2893948327 @default.
- W3191987636 cites W2894842808 @default.
- W3191987636 cites W2895362296 @default.
- W3191987636 cites W2897656496 @default.
- W3191987636 cites W2904076892 @default.
- W3191987636 cites W2904223488 @default.
- W3191987636 cites W2906810210 @default.
- W3191987636 cites W2920467166 @default.
- W3191987636 cites W2921073322 @default.
- W3191987636 cites W2921618546 @default.
- W3191987636 cites W2938252431 @default.
- W3191987636 cites W2944469534 @default.
- W3191987636 cites W2946549543 @default.
- W3191987636 cites W2947405463 @default.
- W3191987636 cites W2947411231 @default.
- W3191987636 cites W2949033029 @default.
- W3191987636 cites W2955833168 @default.
- W3191987636 cites W2966103641 @default.
- W3191987636 cites W2967447630 @default.
- W3191987636 cites W2968136977 @default.
- W3191987636 cites W2972689342 @default.
- W3191987636 cites W2973066061 @default.
- W3191987636 cites W2973612350 @default.
- W3191987636 cites W2973698292 @default.
- W3191987636 cites W2989697099 @default.
- W3191987636 cites W3001466404 @default.
- W3191987636 cites W3007074683 @default.
- W3191987636 cites W3007481363 @default.
- W3191987636 cites W3010739512 @default.
- W3191987636 cites W3011324788 @default.
- W3191987636 cites W3012389419 @default.
- W3191987636 cites W3015908447 @default.
- W3191987636 cites W3016495497 @default.
- W3191987636 cites W3020846985 @default.
- W3191987636 cites W3022391984 @default.
- W3191987636 cites W3036687045 @default.
- W3191987636 cites W3042285765 @default.
- W3191987636 cites W3042328312 @default.
- W3191987636 cites W3042477738 @default.
- W3191987636 cites W3049076698 @default.
- W3191987636 cites W3081143539 @default.
- W3191987636 cites W3088264701 @default.
- W3191987636 cites W3092438501 @default.
- W3191987636 cites W3097496456 @default.
- W3191987636 cites W3104110254 @default.
- W3191987636 cites W3111181800 @default.
- W3191987636 cites W3111186230 @default.
- W3191987636 cites W3111826320 @default.
- W3191987636 cites W3113216600 @default.
- W3191987636 cites W3126560305 @default.
- W3191987636 doi "https://doi.org/10.1016/j.chemosphere.2021.131684" @default.