Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192053439> ?p ?o ?g. }
- W3192053439 endingPage "108211" @default.
- W3192053439 startingPage "108200" @default.
- W3192053439 abstract "This paper proposes a new method for blind mesh visual quality assessment (MVQA) based on a graph convolutional network. For that, we address the node classification problem to predict the perceived visual quality. First, two matrices representing the 3D mesh are considered: a graph adjacency matrix and a feature matrix. Both matrices are used as input to a shallow graph convolutional network. The network consists of two convolutional layers followed by a max-pooling layer to provide the final feature representation. With this structure, the Softmax classifier predicts the quality score category without the reference mesh's availability. Experiments are conducted on four publicly available databases constructed explicitly for the mesh quality assessment task. We investigate several perceptual and visual features to select the most effective combination. Comparisons with the state-of-the-art alternative methods show the effectiveness of the proposed framework." @default.
- W3192053439 created "2021-08-16" @default.
- W3192053439 creator A5006125158 @default.
- W3192053439 creator A5015440023 @default.
- W3192053439 creator A5031504099 @default.
- W3192053439 creator A5046609840 @default.
- W3192053439 creator A5064854962 @default.
- W3192053439 date "2021-01-01" @default.
- W3192053439 modified "2023-09-23" @default.
- W3192053439 title "Learning Graph Convolutional Network for Blind Mesh Visual Quality Assessment" @default.
- W3192053439 cites W1540130673 @default.
- W3192053439 cites W1541725035 @default.
- W3192053439 cites W1963545760 @default.
- W3192053439 cites W1976951250 @default.
- W3192053439 cites W2006502673 @default.
- W3192053439 cites W2006904655 @default.
- W3192053439 cites W2010470479 @default.
- W3192053439 cites W2023661891 @default.
- W3192053439 cites W2042156032 @default.
- W3192053439 cites W2071795107 @default.
- W3192053439 cites W2107902126 @default.
- W3192053439 cites W2127898833 @default.
- W3192053439 cites W2135957668 @default.
- W3192053439 cites W2141369342 @default.
- W3192053439 cites W2149273723 @default.
- W3192053439 cites W2156921260 @default.
- W3192053439 cites W2158787690 @default.
- W3192053439 cites W2161123186 @default.
- W3192053439 cites W2167503995 @default.
- W3192053439 cites W2169371923 @default.
- W3192053439 cites W2462631075 @default.
- W3192053439 cites W2469033579 @default.
- W3192053439 cites W2609335210 @default.
- W3192053439 cites W2611346451 @default.
- W3192053439 cites W2614934572 @default.
- W3192053439 cites W2767136499 @default.
- W3192053439 cites W2789257827 @default.
- W3192053439 cites W2799456501 @default.
- W3192053439 cites W2884643962 @default.
- W3192053439 cites W2888162262 @default.
- W3192053439 cites W2889335804 @default.
- W3192053439 cites W2919115771 @default.
- W3192053439 cites W2969468096 @default.
- W3192053439 cites W2980780662 @default.
- W3192053439 cites W2996855898 @default.
- W3192053439 cites W2997463005 @default.
- W3192053439 cites W3005136217 @default.
- W3192053439 cites W3009684847 @default.
- W3192053439 cites W3009711839 @default.
- W3192053439 cites W3015279878 @default.
- W3192053439 cites W3015337948 @default.
- W3192053439 cites W3015751022 @default.
- W3192053439 cites W3022549875 @default.
- W3192053439 cites W3037401511 @default.
- W3192053439 cites W3045587694 @default.
- W3192053439 cites W3049136406 @default.
- W3192053439 cites W3081293567 @default.
- W3192053439 cites W3087831856 @default.
- W3192053439 cites W3089343273 @default.
- W3192053439 cites W3090141791 @default.
- W3192053439 cites W3123981332 @default.
- W3192053439 cites W4210257598 @default.
- W3192053439 cites W4211253871 @default.
- W3192053439 cites W4230938240 @default.
- W3192053439 cites W4243723963 @default.
- W3192053439 doi "https://doi.org/10.1109/access.2021.3094663" @default.
- W3192053439 hasPublicationYear "2021" @default.
- W3192053439 type Work @default.
- W3192053439 sameAs 3192053439 @default.
- W3192053439 citedByCount "1" @default.
- W3192053439 countsByYear W31920534392022 @default.
- W3192053439 crossrefType "journal-article" @default.
- W3192053439 hasAuthorship W3192053439A5006125158 @default.
- W3192053439 hasAuthorship W3192053439A5015440023 @default.
- W3192053439 hasAuthorship W3192053439A5031504099 @default.
- W3192053439 hasAuthorship W3192053439A5046609840 @default.
- W3192053439 hasAuthorship W3192053439A5064854962 @default.
- W3192053439 hasBestOaLocation W31920534391 @default.
- W3192053439 hasConcept C132525143 @default.
- W3192053439 hasConcept C153180895 @default.
- W3192053439 hasConcept C154945302 @default.
- W3192053439 hasConcept C180356752 @default.
- W3192053439 hasConcept C188441871 @default.
- W3192053439 hasConcept C41008148 @default.
- W3192053439 hasConcept C70437156 @default.
- W3192053439 hasConcept C80444323 @default.
- W3192053439 hasConcept C81363708 @default.
- W3192053439 hasConcept C95623464 @default.
- W3192053439 hasConceptScore W3192053439C132525143 @default.
- W3192053439 hasConceptScore W3192053439C153180895 @default.
- W3192053439 hasConceptScore W3192053439C154945302 @default.
- W3192053439 hasConceptScore W3192053439C180356752 @default.
- W3192053439 hasConceptScore W3192053439C188441871 @default.
- W3192053439 hasConceptScore W3192053439C41008148 @default.
- W3192053439 hasConceptScore W3192053439C70437156 @default.
- W3192053439 hasConceptScore W3192053439C80444323 @default.
- W3192053439 hasConceptScore W3192053439C81363708 @default.
- W3192053439 hasConceptScore W3192053439C95623464 @default.