Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192164042> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3192164042 abstract "Aiming at the problem of poor medical image recognition accuracy caused by the large individual differences in liver pathological images and the large single feature size, a liver image classification method based on dual-channel recalibration and feature fusion is proposed. Firstly, we construct a dual-channel recalibration model based on attention mechanism, suppress useless features and calculate different feature channel weights, and embed them into the Inception_ResNet_V2 network structure. Secondly, we design fully connected layers on the basis of two-dimensional and three-dimensional convolutional neural networks, then add feature fusion layers to obtain deep semantic information in different dimensions. Finally, we use pre-training models to initialize the network structure and input the fused features into the XGBoost classifier for classification prediction. Experiments have been carried out with liver cancer race imaging datasets and a hospital patient dataset. Experimental results show that this method is superior to previous ones." @default.
- W3192164042 created "2021-08-16" @default.
- W3192164042 creator A5003780000 @default.
- W3192164042 creator A5007898359 @default.
- W3192164042 creator A5028255512 @default.
- W3192164042 creator A5048918848 @default.
- W3192164042 date "2021-01-01" @default.
- W3192164042 modified "2023-09-28" @default.
- W3192164042 title "Dual-Channel Recalibration and Feature Fusion Method for Liver Image Classification" @default.
- W3192164042 cites W2028735463 @default.
- W3192164042 cites W2183341477 @default.
- W3192164042 cites W2594112328 @default.
- W3192164042 cites W2752782242 @default.
- W3192164042 cites W2803808737 @default.
- W3192164042 cites W2912801230 @default.
- W3192164042 cites W2913246999 @default.
- W3192164042 cites W2921934355 @default.
- W3192164042 cites W2962884052 @default.
- W3192164042 cites W2962890454 @default.
- W3192164042 cites W2962934715 @default.
- W3192164042 cites W2979921619 @default.
- W3192164042 cites W2985869964 @default.
- W3192164042 cites W3001369223 @default.
- W3192164042 cites W3005676475 @default.
- W3192164042 cites W3034534947 @default.
- W3192164042 cites W3048388139 @default.
- W3192164042 cites W3124839766 @default.
- W3192164042 cites W996075119 @default.
- W3192164042 doi "https://doi.org/10.1007/978-3-030-84529-2_49" @default.
- W3192164042 hasPublicationYear "2021" @default.
- W3192164042 type Work @default.
- W3192164042 sameAs 3192164042 @default.
- W3192164042 citedByCount "0" @default.
- W3192164042 crossrefType "book-chapter" @default.
- W3192164042 hasAuthorship W3192164042A5003780000 @default.
- W3192164042 hasAuthorship W3192164042A5007898359 @default.
- W3192164042 hasAuthorship W3192164042A5028255512 @default.
- W3192164042 hasAuthorship W3192164042A5048918848 @default.
- W3192164042 hasConcept C127162648 @default.
- W3192164042 hasConcept C138885662 @default.
- W3192164042 hasConcept C153180895 @default.
- W3192164042 hasConcept C154945302 @default.
- W3192164042 hasConcept C2776401178 @default.
- W3192164042 hasConcept C31258907 @default.
- W3192164042 hasConcept C41008148 @default.
- W3192164042 hasConcept C41895202 @default.
- W3192164042 hasConcept C52622490 @default.
- W3192164042 hasConcept C81363708 @default.
- W3192164042 hasConcept C95623464 @default.
- W3192164042 hasConceptScore W3192164042C127162648 @default.
- W3192164042 hasConceptScore W3192164042C138885662 @default.
- W3192164042 hasConceptScore W3192164042C153180895 @default.
- W3192164042 hasConceptScore W3192164042C154945302 @default.
- W3192164042 hasConceptScore W3192164042C2776401178 @default.
- W3192164042 hasConceptScore W3192164042C31258907 @default.
- W3192164042 hasConceptScore W3192164042C41008148 @default.
- W3192164042 hasConceptScore W3192164042C41895202 @default.
- W3192164042 hasConceptScore W3192164042C52622490 @default.
- W3192164042 hasConceptScore W3192164042C81363708 @default.
- W3192164042 hasConceptScore W3192164042C95623464 @default.
- W3192164042 hasLocation W31921640421 @default.
- W3192164042 hasOpenAccess W3192164042 @default.
- W3192164042 hasPrimaryLocation W31921640421 @default.
- W3192164042 hasRelatedWork W14536956 @default.
- W3192164042 hasRelatedWork W15119441 @default.
- W3192164042 hasRelatedWork W2582698 @default.
- W3192164042 hasRelatedWork W2834797 @default.
- W3192164042 hasRelatedWork W2988963 @default.
- W3192164042 hasRelatedWork W3506425 @default.
- W3192164042 hasRelatedWork W5535156 @default.
- W3192164042 hasRelatedWork W844961 @default.
- W3192164042 hasRelatedWork W9362070 @default.
- W3192164042 hasRelatedWork W9958333 @default.
- W3192164042 isParatext "false" @default.
- W3192164042 isRetracted "false" @default.
- W3192164042 magId "3192164042" @default.
- W3192164042 workType "book-chapter" @default.