Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192193374> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3192193374 abstract "Machine Learning is refers to the field of study that offers computers the capacity to find out the results while not being explicitly programmed. i.e., Machine learning includes algorithms that improve through occurrence. It is the subset of Artificial Intelligence. Finding out physiological information, environmental influences, and genetic factors permit practitioners to diagnose diseases early and effectively. Machine learning permits to make models that associate a broad range of variables with an illness. The analysis of clinical information allows to grasp the biological mechanisms, diseases and the way risk factors influence their development. However, there’s a scarcity of effective analysis tools to get hidden relationships and patterns in information. An automatic system in diagnosing would enhance medical potency and cut back prices. The appliance of machine learning within the field of diagnosing is increasing bit by bit. This may be accorded primarily to the development within the classification and recognition systems present in unwellness designation that is ready to supply information that aids doctors in early detection of deadly sickness and so, decreases the death rate of patients considerably." @default.
- W3192193374 created "2021-08-16" @default.
- W3192193374 creator A5027737194 @default.
- W3192193374 creator A5057904070 @default.
- W3192193374 creator A5075742536 @default.
- W3192193374 date "2021-06-16" @default.
- W3192193374 modified "2023-09-25" @default.
- W3192193374 title "Computational Approach for Heart Disease Prediction using Machine Learning" @default.
- W3192193374 cites W2898314458 @default.
- W3192193374 cites W2949767632 @default.
- W3192193374 cites W2982980439 @default.
- W3192193374 cites W3001215021 @default.
- W3192193374 cites W3044073403 @default.
- W3192193374 cites W3048581266 @default.
- W3192193374 cites W3049061403 @default.
- W3192193374 cites W3083676648 @default.
- W3192193374 cites W3088428904 @default.
- W3192193374 doi "https://doi.org/10.1109/iccisc52257.2021.9485014" @default.
- W3192193374 hasPublicationYear "2021" @default.
- W3192193374 type Work @default.
- W3192193374 sameAs 3192193374 @default.
- W3192193374 citedByCount "1" @default.
- W3192193374 countsByYear W31921933742022 @default.
- W3192193374 crossrefType "proceedings-article" @default.
- W3192193374 hasAuthorship W3192193374A5027737194 @default.
- W3192193374 hasAuthorship W3192193374A5057904070 @default.
- W3192193374 hasAuthorship W3192193374A5075742536 @default.
- W3192193374 hasConcept C109747225 @default.
- W3192193374 hasConcept C112930515 @default.
- W3192193374 hasConcept C119857082 @default.
- W3192193374 hasConcept C142724271 @default.
- W3192193374 hasConcept C154945302 @default.
- W3192193374 hasConcept C162324750 @default.
- W3192193374 hasConcept C171268870 @default.
- W3192193374 hasConcept C175444787 @default.
- W3192193374 hasConcept C199360897 @default.
- W3192193374 hasConcept C202444582 @default.
- W3192193374 hasConcept C2779134260 @default.
- W3192193374 hasConcept C33923547 @default.
- W3192193374 hasConcept C41008148 @default.
- W3192193374 hasConcept C71924100 @default.
- W3192193374 hasConcept C9652623 @default.
- W3192193374 hasConceptScore W3192193374C109747225 @default.
- W3192193374 hasConceptScore W3192193374C112930515 @default.
- W3192193374 hasConceptScore W3192193374C119857082 @default.
- W3192193374 hasConceptScore W3192193374C142724271 @default.
- W3192193374 hasConceptScore W3192193374C154945302 @default.
- W3192193374 hasConceptScore W3192193374C162324750 @default.
- W3192193374 hasConceptScore W3192193374C171268870 @default.
- W3192193374 hasConceptScore W3192193374C175444787 @default.
- W3192193374 hasConceptScore W3192193374C199360897 @default.
- W3192193374 hasConceptScore W3192193374C202444582 @default.
- W3192193374 hasConceptScore W3192193374C2779134260 @default.
- W3192193374 hasConceptScore W3192193374C33923547 @default.
- W3192193374 hasConceptScore W3192193374C41008148 @default.
- W3192193374 hasConceptScore W3192193374C71924100 @default.
- W3192193374 hasConceptScore W3192193374C9652623 @default.
- W3192193374 hasLocation W31921933741 @default.
- W3192193374 hasOpenAccess W3192193374 @default.
- W3192193374 hasPrimaryLocation W31921933741 @default.
- W3192193374 hasRelatedWork W11731714 @default.
- W3192193374 hasRelatedWork W12165144 @default.
- W3192193374 hasRelatedWork W14024944 @default.
- W3192193374 hasRelatedWork W1655064 @default.
- W3192193374 hasRelatedWork W2246538 @default.
- W3192193374 hasRelatedWork W7933314 @default.
- W3192193374 hasRelatedWork W8741732 @default.
- W3192193374 hasRelatedWork W9190101 @default.
- W3192193374 hasRelatedWork W9590288 @default.
- W3192193374 hasRelatedWork W2237036 @default.
- W3192193374 isParatext "false" @default.
- W3192193374 isRetracted "false" @default.
- W3192193374 magId "3192193374" @default.
- W3192193374 workType "article" @default.