Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192276952> ?p ?o ?g. }
- W3192276952 abstract "High-dimensional time series datasets are becoming increasingly common in many areas of biological and social sciences. Some important applications include gene regulatory network reconstruction using time course gene expression data, brain connectivity analysis from neuroimaging data, structural analysis of a large panel of macroeconomic indicators, and studying linkages among financial firms for more robust financial regulation. These applications have led to renewed interest in developing principled statistical methods and theory for estimating large time series models given only a relatively small number of temporally dependent samples. Sparse modeling approaches have gained popularity over the last two decades in statistics and machine learning for their interpretability and predictive accuracy. Although there is a rich literature on several sparsity inducing methods when samples are independent, research on the statistical properties of these methods for estimating time series models is still in progress. We survey some recent advances in this area, focusing on empirically successful lasso based estimation methods for two canonical multivariate time series models - stochastic regression and vector autoregression. We discuss key technical challenges arising in high-dimensional time series analysis and outline several interesting research directions." @default.
- W3192276952 created "2021-08-16" @default.
- W3192276952 creator A5004126850 @default.
- W3192276952 creator A5051412963 @default.
- W3192276952 date "2021-07-30" @default.
- W3192276952 modified "2023-09-27" @default.
- W3192276952 title "A Survey of Estimation Methods for Sparse High-dimensional Time Series Models" @default.
- W3192276952 cites W1494605729 @default.
- W3192276952 cites W1524449313 @default.
- W3192276952 cites W1525708912 @default.
- W3192276952 cites W1822937469 @default.
- W3192276952 cites W1859880334 @default.
- W3192276952 cites W1875396108 @default.
- W3192276952 cites W1906803716 @default.
- W3192276952 cites W1949741824 @default.
- W3192276952 cites W1966921507 @default.
- W3192276952 cites W1968694834 @default.
- W3192276952 cites W1984305442 @default.
- W3192276952 cites W1996703612 @default.
- W3192276952 cites W2019459021 @default.
- W3192276952 cites W2020925091 @default.
- W3192276952 cites W2029202224 @default.
- W3192276952 cites W2047028564 @default.
- W3192276952 cites W2056186894 @default.
- W3192276952 cites W2056871913 @default.
- W3192276952 cites W2068019718 @default.
- W3192276952 cites W2073133379 @default.
- W3192276952 cites W2074682976 @default.
- W3192276952 cites W2075672181 @default.
- W3192276952 cites W2094514178 @default.
- W3192276952 cites W2098588523 @default.
- W3192276952 cites W2100967164 @default.
- W3192276952 cites W2103561022 @default.
- W3192276952 cites W2122825543 @default.
- W3192276952 cites W2135046866 @default.
- W3192276952 cites W2140971281 @default.
- W3192276952 cites W2144738674 @default.
- W3192276952 cites W2145490891 @default.
- W3192276952 cites W2154972590 @default.
- W3192276952 cites W2155350940 @default.
- W3192276952 cites W2161515775 @default.
- W3192276952 cites W2162312215 @default.
- W3192276952 cites W2163899311 @default.
- W3192276952 cites W2218268564 @default.
- W3192276952 cites W2235253227 @default.
- W3192276952 cites W2274029167 @default.
- W3192276952 cites W2276378382 @default.
- W3192276952 cites W2287082877 @default.
- W3192276952 cites W2349201133 @default.
- W3192276952 cites W2404827031 @default.
- W3192276952 cites W250512483 @default.
- W3192276952 cites W2517786039 @default.
- W3192276952 cites W2586353914 @default.
- W3192276952 cites W2593334737 @default.
- W3192276952 cites W2618458548 @default.
- W3192276952 cites W2738586679 @default.
- W3192276952 cites W2767242110 @default.
- W3192276952 cites W2786121029 @default.
- W3192276952 cites W2950859181 @default.
- W3192276952 cites W2962709699 @default.
- W3192276952 cites W2962716677 @default.
- W3192276952 cites W3028794438 @default.
- W3192276952 cites W3085120741 @default.
- W3192276952 cites W3105322001 @default.
- W3192276952 cites W3121553976 @default.
- W3192276952 cites W3121832289 @default.
- W3192276952 cites W3122503089 @default.
- W3192276952 cites W3123085324 @default.
- W3192276952 cites W3125932699 @default.
- W3192276952 cites W3146166473 @default.
- W3192276952 cites W3166386823 @default.
- W3192276952 cites W340056678 @default.
- W3192276952 hasPublicationYear "2021" @default.
- W3192276952 type Work @default.
- W3192276952 sameAs 3192276952 @default.
- W3192276952 citedByCount "1" @default.
- W3192276952 countsByYear W31922769522021 @default.
- W3192276952 crossrefType "posted-content" @default.
- W3192276952 hasAuthorship W3192276952A5004126850 @default.
- W3192276952 hasAuthorship W3192276952A5051412963 @default.
- W3192276952 hasConcept C114289077 @default.
- W3192276952 hasConcept C119857082 @default.
- W3192276952 hasConcept C124101348 @default.
- W3192276952 hasConcept C136764020 @default.
- W3192276952 hasConcept C143724316 @default.
- W3192276952 hasConcept C149782125 @default.
- W3192276952 hasConcept C151406439 @default.
- W3192276952 hasConcept C151730666 @default.
- W3192276952 hasConcept C154945302 @default.
- W3192276952 hasConcept C161584116 @default.
- W3192276952 hasConcept C162324750 @default.
- W3192276952 hasConcept C187736073 @default.
- W3192276952 hasConcept C2781067378 @default.
- W3192276952 hasConcept C33923547 @default.
- W3192276952 hasConcept C37616216 @default.
- W3192276952 hasConcept C41008148 @default.
- W3192276952 hasConcept C86803240 @default.
- W3192276952 hasConcept C96250715 @default.
- W3192276952 hasConceptScore W3192276952C114289077 @default.
- W3192276952 hasConceptScore W3192276952C119857082 @default.