Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192293407> ?p ?o ?g. }
- W3192293407 endingPage "7343" @default.
- W3192293407 startingPage "7343" @default.
- W3192293407 abstract "Data with a multimodal pattern can be analyzed using a mixture model. In a mixture model, the most important step is the determination of the number of mixture components, because finding the correct number of mixture components will reduce the error of the resulting model. In a Bayesian analysis, one method that can be used to determine the number of mixture components is the reversible jump Markov chain Monte Carlo (RJMCMC). The RJMCMC is used for distributions that have location and scale parameters or location-scale distribution, such as the Gaussian distribution family. In this research, we added an important step before beginning to use the RJMCMC method, namely the modification of the analyzed distribution into location-scale distribution. We called this the non-Gaussian RJMCMC (NG-RJMCMC) algorithm. The following steps are the same as for the RJMCMC. In this study, we applied it to the Weibull distribution. This will help many researchers in the field of survival analysis since most of the survival time distribution is Weibull. We transformed the Weibull distribution into a location-scale distribution, which is the extreme value (EV) type 1 (Gumbel-type for minima) distribution. Thus, for the mixture analysis, we call this EV-I mixture distribution. Based on the simulation results, we can conclude that the accuracy level is at minimum 95%. We also applied the EV-I mixture distribution and compared it with the Gaussian mixture distribution for enzyme, acidity, and galaxy datasets. Based on the Kullback–Leibler divergence (KLD) and visual observation, the EV-I mixture distribution has higher coverage than the Gaussian mixture distribution. We also applied it to our dengue hemorrhagic fever (DHF) data from eastern Surabaya, East Java, Indonesia. The estimation results show that the number of mixture components in the data is four; we also obtained the estimation results of the other parameters and labels for each observation. Based on the Kullback–Leibler divergence (KLD) and visual observation, for our data, the EV-I mixture distribution offers better coverage than the Gaussian mixture distribution." @default.
- W3192293407 created "2021-08-16" @default.
- W3192293407 creator A5023928934 @default.
- W3192293407 creator A5062925455 @default.
- W3192293407 creator A5079662367 @default.
- W3192293407 date "2021-08-10" @default.
- W3192293407 modified "2023-09-27" @default.
- W3192293407 title "On the Reversible Jump Markov Chain Monte Carlo (RJMCMC) Algorithm for Extreme Value Mixture Distribution as a Location-Scale Transformation of the Weibull Distribution" @default.
- W3192293407 cites W1508638168 @default.
- W3192293407 cites W1528068698 @default.
- W3192293407 cites W1570876803 @default.
- W3192293407 cites W1572134371 @default.
- W3192293407 cites W1686367817 @default.
- W3192293407 cites W1952261593 @default.
- W3192293407 cites W1973140301 @default.
- W3192293407 cites W1973315576 @default.
- W3192293407 cites W1980366645 @default.
- W3192293407 cites W1981100514 @default.
- W3192293407 cites W1983502195 @default.
- W3192293407 cites W1989964704 @default.
- W3192293407 cites W1993463265 @default.
- W3192293407 cites W2000751444 @default.
- W3192293407 cites W2001664936 @default.
- W3192293407 cites W2003144493 @default.
- W3192293407 cites W2003432789 @default.
- W3192293407 cites W2003520955 @default.
- W3192293407 cites W2005021081 @default.
- W3192293407 cites W2012174789 @default.
- W3192293407 cites W2025014254 @default.
- W3192293407 cites W2026653933 @default.
- W3192293407 cites W2026999222 @default.
- W3192293407 cites W2029231108 @default.
- W3192293407 cites W2029514901 @default.
- W3192293407 cites W2035740732 @default.
- W3192293407 cites W2038885294 @default.
- W3192293407 cites W2040042308 @default.
- W3192293407 cites W2041993031 @default.
- W3192293407 cites W2043549322 @default.
- W3192293407 cites W2044579390 @default.
- W3192293407 cites W2058278325 @default.
- W3192293407 cites W2059868343 @default.
- W3192293407 cites W2060967284 @default.
- W3192293407 cites W2061077816 @default.
- W3192293407 cites W2063191885 @default.
- W3192293407 cites W2064685291 @default.
- W3192293407 cites W2067034280 @default.
- W3192293407 cites W2067819510 @default.
- W3192293407 cites W2072623282 @default.
- W3192293407 cites W2079564919 @default.
- W3192293407 cites W2096918671 @default.
- W3192293407 cites W2104106189 @default.
- W3192293407 cites W2106706098 @default.
- W3192293407 cites W2123679406 @default.
- W3192293407 cites W2138533472 @default.
- W3192293407 cites W2153784930 @default.
- W3192293407 cites W2155688156 @default.
- W3192293407 cites W2166379450 @default.
- W3192293407 cites W2167188021 @default.
- W3192293407 cites W2242071559 @default.
- W3192293407 cites W2281824711 @default.
- W3192293407 cites W2492321475 @default.
- W3192293407 cites W2514709908 @default.
- W3192293407 cites W2572590842 @default.
- W3192293407 cites W2620693037 @default.
- W3192293407 cites W2774302079 @default.
- W3192293407 cites W2804941162 @default.
- W3192293407 cites W2888056597 @default.
- W3192293407 cites W2913372705 @default.
- W3192293407 cites W2921022534 @default.
- W3192293407 cites W2943529586 @default.
- W3192293407 cites W2963589997 @default.
- W3192293407 cites W2965934650 @default.
- W3192293407 cites W3100309751 @default.
- W3192293407 cites W3119417624 @default.
- W3192293407 cites W3134537351 @default.
- W3192293407 doi "https://doi.org/10.3390/app11167343" @default.
- W3192293407 hasPublicationYear "2021" @default.
- W3192293407 type Work @default.
- W3192293407 sameAs 3192293407 @default.
- W3192293407 citedByCount "1" @default.
- W3192293407 countsByYear W31922934072022 @default.
- W3192293407 crossrefType "journal-article" @default.
- W3192293407 hasAuthorship W3192293407A5023928934 @default.
- W3192293407 hasAuthorship W3192293407A5062925455 @default.
- W3192293407 hasAuthorship W3192293407A5079662367 @default.
- W3192293407 hasBestOaLocation W31922934071 @default.
- W3192293407 hasConcept C105795698 @default.
- W3192293407 hasConcept C111350023 @default.
- W3192293407 hasConcept C11413529 @default.
- W3192293407 hasConcept C137610916 @default.
- W3192293407 hasConcept C147581598 @default.
- W3192293407 hasConcept C169707849 @default.
- W3192293407 hasConcept C173291955 @default.
- W3192293407 hasConcept C19499675 @default.
- W3192293407 hasConcept C197055811 @default.
- W3192293407 hasConcept C2780591659 @default.
- W3192293407 hasConcept C33923547 @default.
- W3192293407 hasConcept C56672385 @default.