Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192393044> ?p ?o ?g. }
- W3192393044 endingPage "108081" @default.
- W3192393044 startingPage "108081" @default.
- W3192393044 abstract "The study of grasslands using machine learning (ML) methods combined with proximal/remote sensing data (RS) has been steadily increasing in the last decades. Available algorithms range from a primarily academic use to more widespread practical applications intended at helping farm management. Here, we review the use of ML methods applied to aboveground biomass (AGB) estimation in grassland systems. Based on 26 recent papers, we perform a literature review of the topic to identify common practices, namely the relation between estimation performance and the ML method used, data sources, and scale (local/regional). In order to identify the relation between the characteristics of the studies and the estimation accuracy, we use descriptive and correlation analysis. In spite of a surge in the number of papers and application examples, there is no evidence that the estimation performance of the algorithms has been improving over time. In all approaches used by the authors of the papers herein considered, the number of field samples, RS data source, and species composition of the grassland systems are the most relevant variables to explain the estimation accuracy. This accuracy increases with the number of field samples until it plateaus, hinting at the existence of an optimum level for monitoring efforts. Accuracy also increases with the proximity of the sensor to the field, i.e., on average accuracy is higher using field spectroscopy than using satellite data. There is no evidence that any particular ML method is more suited to this problem. The literature also displays significant limitations in terms of its applications of the ML algorithms. For example, a limited number of papers validated the models, casting doubt on the potential of the models for generalized application. Despite those limitations, and considering the advancements verified, we expect that, in the near future, ML methods combined with RS/proximal data will continue to improve and be helpful for farm management." @default.
- W3192393044 created "2021-08-16" @default.
- W3192393044 creator A5026826555 @default.
- W3192393044 creator A5057453796 @default.
- W3192393044 creator A5058180548 @default.
- W3192393044 creator A5085995018 @default.
- W3192393044 date "2021-11-01" @default.
- W3192393044 modified "2023-10-06" @default.
- W3192393044 title "The use of machine learning methods to estimate aboveground biomass of grasslands: A review" @default.
- W3192393044 cites W1879552348 @default.
- W3192393044 cites W1901616594 @default.
- W3192393044 cites W1966271002 @default.
- W3192393044 cites W1982216854 @default.
- W3192393044 cites W1998943389 @default.
- W3192393044 cites W2005358860 @default.
- W3192393044 cites W2014408679 @default.
- W3192393044 cites W2020088441 @default.
- W3192393044 cites W2025700928 @default.
- W3192393044 cites W2050269337 @default.
- W3192393044 cites W2072750586 @default.
- W3192393044 cites W2073786624 @default.
- W3192393044 cites W2078483536 @default.
- W3192393044 cites W2080545724 @default.
- W3192393044 cites W2082691405 @default.
- W3192393044 cites W2094367244 @default.
- W3192393044 cites W2095464314 @default.
- W3192393044 cites W2105872868 @default.
- W3192393044 cites W2132728450 @default.
- W3192393044 cites W2141826761 @default.
- W3192393044 cites W2145982493 @default.
- W3192393044 cites W2157215596 @default.
- W3192393044 cites W2188767531 @default.
- W3192393044 cites W2192020007 @default.
- W3192393044 cites W2206416271 @default.
- W3192393044 cites W2252301886 @default.
- W3192393044 cites W2419137750 @default.
- W3192393044 cites W2466269622 @default.
- W3192393044 cites W2488702363 @default.
- W3192393044 cites W2507863315 @default.
- W3192393044 cites W2510136745 @default.
- W3192393044 cites W2540270678 @default.
- W3192393044 cites W2551718807 @default.
- W3192393044 cites W2553303027 @default.
- W3192393044 cites W2564060852 @default.
- W3192393044 cites W2579656072 @default.
- W3192393044 cites W2581704006 @default.
- W3192393044 cites W2592784952 @default.
- W3192393044 cites W2751418581 @default.
- W3192393044 cites W2763455760 @default.
- W3192393044 cites W2765453548 @default.
- W3192393044 cites W2767349927 @default.
- W3192393044 cites W2772275873 @default.
- W3192393044 cites W2780388729 @default.
- W3192393044 cites W2788933882 @default.
- W3192393044 cites W2793177454 @default.
- W3192393044 cites W2793604277 @default.
- W3192393044 cites W2800536838 @default.
- W3192393044 cites W2803775013 @default.
- W3192393044 cites W2804910112 @default.
- W3192393044 cites W2886329799 @default.
- W3192393044 cites W2899545242 @default.
- W3192393044 cites W2900379892 @default.
- W3192393044 cites W2900771755 @default.
- W3192393044 cites W2901602617 @default.
- W3192393044 cites W2901914797 @default.
- W3192393044 cites W2902774019 @default.
- W3192393044 cites W2905798968 @default.
- W3192393044 cites W2909136697 @default.
- W3192393044 cites W2911298349 @default.
- W3192393044 cites W2911730714 @default.
- W3192393044 cites W2922437453 @default.
- W3192393044 cites W2923714778 @default.
- W3192393044 cites W2934399013 @default.
- W3192393044 cites W2938348010 @default.
- W3192393044 cites W2946046457 @default.
- W3192393044 cites W2950294063 @default.
- W3192393044 cites W2964782831 @default.
- W3192393044 cites W2966358285 @default.
- W3192393044 cites W2971653617 @default.
- W3192393044 cites W2981535574 @default.
- W3192393044 cites W2988229547 @default.
- W3192393044 cites W2989983419 @default.
- W3192393044 cites W3009280154 @default.
- W3192393044 doi "https://doi.org/10.1016/j.ecolind.2021.108081" @default.
- W3192393044 hasPublicationYear "2021" @default.
- W3192393044 type Work @default.
- W3192393044 sameAs 3192393044 @default.
- W3192393044 citedByCount "36" @default.
- W3192393044 countsByYear W31923930442021 @default.
- W3192393044 countsByYear W31923930442022 @default.
- W3192393044 countsByYear W31923930442023 @default.
- W3192393044 crossrefType "journal-article" @default.
- W3192393044 hasAuthorship W3192393044A5026826555 @default.
- W3192393044 hasAuthorship W3192393044A5057453796 @default.
- W3192393044 hasAuthorship W3192393044A5058180548 @default.
- W3192393044 hasAuthorship W3192393044A5085995018 @default.
- W3192393044 hasBestOaLocation W31923930441 @default.
- W3192393044 hasConcept C115540264 @default.