Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192441331> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3192441331 abstract "Abstract Study question Can Machine Learning predict multiple pregnancy based on data specific to the embryos and the patient? Summary answer Embryo data are useful in determining which embryos are likely to lead to multiple pregnancy. Patient age has low predictive value compared to embryo data. What is known already Our previous assessment of the HFEA data demonstrated that single embryo transfer (SET) in the UK occurred in a minority (45%) of fresh cycles, with a marginal increase in live birth rate (LBR) in some patient cohorts in favor of multiple embryo transfer (MET). Current policies on determining number of embryos for transfer tend to be generic and do not account for detailed embryology data. Generic policies may compromise LBR for some patients that would benefit from MET. Artificial Intelligence has the potential to assist in this decision process. Study design, size, duration Retrospective cohort analysis from 2013 to 2020 of 193 cycles with 386 embryos used in double ETs on day 5 at POMA fertility clinic with positive live birth outcome. ML model, xgboost, was trained to predict multiple live birth (N = 54) versus single live birth (N = 139). Detailed embryology data from day 1 to day 5 were used as input. Participants/materials, setting, methods Input of the machine learning model included patient age and 18 morphological parameters collected on days 1, 2, 3 and 5 (symmetry, number of cells, blastocyst status, fragmentation, ICM and troph grades) from the two transferred embryos. An xgboost algorithm was trained on 80% of the data (n = 154) and tested on 20% of blind data (n = 39). Main results and the role of chance Xgboost machine learning algorithm predicted multiple live birth on the blind dataset with an accuracy of 72%, with an AUC of 0.60, showing better results than random. PPV (true prediction of multiple births) was 64% and NPV (true prediction of single birth) was 75%. The following parameters ranked high in the predictive power of the machine learning (in order of predictive power): blastocyst status on day 5 of both embryos, symmetry on day 3, number of cells on day 2, scores on day 2 and 3. Limitations, reasons for caution: The dataset was derived from a single clinic with manual annotations and may not be transferable to other clinics. The risk of bias is important as the model was trained only àon embryos that were transferred and led to at least one birth Wider implications of the findings: A tool to help identify which patients are at increased risk of MP with MET would be clinically useful to help patients and clinical team make the best personalised decision for a specific embryo, finding the balance between maximising success rate whilst minimising multiple pregnancy rate and its associated risks. Trial registration number Not applicable" @default.
- W3192441331 created "2021-08-16" @default.
- W3192441331 creator A5023987698 @default.
- W3192441331 creator A5028436846 @default.
- W3192441331 creator A5030011968 @default.
- W3192441331 creator A5030749674 @default.
- W3192441331 creator A5046241382 @default.
- W3192441331 creator A5052036905 @default.
- W3192441331 date "2021-07-01" @default.
- W3192441331 modified "2023-09-27" @default.
- W3192441331 title "P–378 Using a machine learning tool (72% accuracy with 64% PPV) to predict multiple live birth when transferring multiple embryos, based on embryo specific data" @default.
- W3192441331 doi "https://doi.org/10.1093/humrep/deab130.377" @default.
- W3192441331 hasPublicationYear "2021" @default.
- W3192441331 type Work @default.
- W3192441331 sameAs 3192441331 @default.
- W3192441331 citedByCount "0" @default.
- W3192441331 crossrefType "journal-article" @default.
- W3192441331 hasAuthorship W3192441331A5023987698 @default.
- W3192441331 hasAuthorship W3192441331A5028436846 @default.
- W3192441331 hasAuthorship W3192441331A5030011968 @default.
- W3192441331 hasAuthorship W3192441331A5030749674 @default.
- W3192441331 hasAuthorship W3192441331A5046241382 @default.
- W3192441331 hasAuthorship W3192441331A5052036905 @default.
- W3192441331 hasConcept C117354338 @default.
- W3192441331 hasConcept C131872663 @default.
- W3192441331 hasConcept C141071460 @default.
- W3192441331 hasConcept C154945302 @default.
- W3192441331 hasConcept C160099875 @default.
- W3192441331 hasConcept C167135981 @default.
- W3192441331 hasConcept C196843134 @default.
- W3192441331 hasConcept C2778177303 @default.
- W3192441331 hasConcept C2778279030 @default.
- W3192441331 hasConcept C2779234561 @default.
- W3192441331 hasConcept C2908647359 @default.
- W3192441331 hasConcept C2910802627 @default.
- W3192441331 hasConcept C29456083 @default.
- W3192441331 hasConcept C41008148 @default.
- W3192441331 hasConcept C518429986 @default.
- W3192441331 hasConcept C54355233 @default.
- W3192441331 hasConcept C71924100 @default.
- W3192441331 hasConcept C86803240 @default.
- W3192441331 hasConcept C87073359 @default.
- W3192441331 hasConcept C99454951 @default.
- W3192441331 hasConceptScore W3192441331C117354338 @default.
- W3192441331 hasConceptScore W3192441331C131872663 @default.
- W3192441331 hasConceptScore W3192441331C141071460 @default.
- W3192441331 hasConceptScore W3192441331C154945302 @default.
- W3192441331 hasConceptScore W3192441331C160099875 @default.
- W3192441331 hasConceptScore W3192441331C167135981 @default.
- W3192441331 hasConceptScore W3192441331C196843134 @default.
- W3192441331 hasConceptScore W3192441331C2778177303 @default.
- W3192441331 hasConceptScore W3192441331C2778279030 @default.
- W3192441331 hasConceptScore W3192441331C2779234561 @default.
- W3192441331 hasConceptScore W3192441331C2908647359 @default.
- W3192441331 hasConceptScore W3192441331C2910802627 @default.
- W3192441331 hasConceptScore W3192441331C29456083 @default.
- W3192441331 hasConceptScore W3192441331C41008148 @default.
- W3192441331 hasConceptScore W3192441331C518429986 @default.
- W3192441331 hasConceptScore W3192441331C54355233 @default.
- W3192441331 hasConceptScore W3192441331C71924100 @default.
- W3192441331 hasConceptScore W3192441331C86803240 @default.
- W3192441331 hasConceptScore W3192441331C87073359 @default.
- W3192441331 hasConceptScore W3192441331C99454951 @default.
- W3192441331 hasIssue "Supplement_1" @default.
- W3192441331 hasLocation W31924413311 @default.
- W3192441331 hasOpenAccess W3192441331 @default.
- W3192441331 hasPrimaryLocation W31924413311 @default.
- W3192441331 hasRelatedWork W2118595224 @default.
- W3192441331 hasRelatedWork W2591572737 @default.
- W3192441331 hasRelatedWork W2910353759 @default.
- W3192441331 hasRelatedWork W2965060531 @default.
- W3192441331 hasRelatedWork W3004961859 @default.
- W3192441331 hasRelatedWork W3049247373 @default.
- W3192441331 hasRelatedWork W3122850921 @default.
- W3192441331 hasRelatedWork W3165322705 @default.
- W3192441331 hasRelatedWork W3195154068 @default.
- W3192441331 hasRelatedWork W4220981710 @default.
- W3192441331 hasVolume "36" @default.
- W3192441331 isParatext "false" @default.
- W3192441331 isRetracted "false" @default.
- W3192441331 magId "3192441331" @default.
- W3192441331 workType "article" @default.