Matches in SemOpenAlex for { <https://semopenalex.org/work/W3192593361> ?p ?o ?g. }
- W3192593361 endingPage "e662" @default.
- W3192593361 startingPage "e662" @default.
- W3192593361 abstract "This paper presents a novel method for attitude estimation of an object in 3D space by incremental learning of the Long-Short Term Memory (LSTM) network. Gyroscope, accelerometer, and magnetometer are few widely used sensors in attitude estimation applications. Traditionally, multi-sensor fusion methods such as the Extended Kalman Filter and Complementary Filter are employed to fuse the measurements from these sensors. However, these methods exhibit limitations in accounting for the uncertainty, unpredictability, and dynamic nature of the motion in real-world situations. In this paper, the inertial sensors data are fed to the LSTM network which are then updated incrementally to incorporate the dynamic changes in motion occurring in the run time. The robustness and efficiency of the proposed framework is demonstrated on the dataset collected from a commercially available inertial measurement unit. The proposed framework offers a significant improvement in the results compared to the traditional method, even in the case of a highly dynamic environment. The LSTM framework-based attitude estimation approach can be deployed on a standard AI-supported processing module for real-time applications." @default.
- W3192593361 created "2021-08-16" @default.
- W3192593361 creator A5038631163 @default.
- W3192593361 creator A5068767089 @default.
- W3192593361 creator A5069253574 @default.
- W3192593361 creator A5077770842 @default.
- W3192593361 date "2021-08-04" @default.
- W3192593361 modified "2023-10-17" @default.
- W3192593361 title "Incremental learning of LSTM framework for sensor fusion in attitude estimation" @default.
- W3192593361 cites W1498436455 @default.
- W3192593361 cites W1564768010 @default.
- W3192593361 cites W2016498259 @default.
- W3192593361 cites W2021044602 @default.
- W3192593361 cites W2025330030 @default.
- W3192593361 cites W2038011913 @default.
- W3192593361 cites W2064675550 @default.
- W3192593361 cites W2105934661 @default.
- W3192593361 cites W2107878631 @default.
- W3192593361 cites W2110441826 @default.
- W3192593361 cites W2121546278 @default.
- W3192593361 cites W2123487311 @default.
- W3192593361 cites W2125691646 @default.
- W3192593361 cites W2129371582 @default.
- W3192593361 cites W2132240870 @default.
- W3192593361 cites W2133964965 @default.
- W3192593361 cites W2139362983 @default.
- W3192593361 cites W2144831580 @default.
- W3192593361 cites W2154748236 @default.
- W3192593361 cites W2204246008 @default.
- W3192593361 cites W2321939177 @default.
- W3192593361 cites W2592084114 @default.
- W3192593361 cites W2620780412 @default.
- W3192593361 cites W264320815 @default.
- W3192593361 cites W2735506811 @default.
- W3192593361 cites W2772525328 @default.
- W3192593361 cites W2797032721 @default.
- W3192593361 cites W2889344085 @default.
- W3192593361 cites W2896474691 @default.
- W3192593361 cites W2915945464 @default.
- W3192593361 cites W2922100078 @default.
- W3192593361 cites W2923362262 @default.
- W3192593361 cites W2986375760 @default.
- W3192593361 cites W2996041315 @default.
- W3192593361 cites W3013553463 @default.
- W3192593361 cites W3038243112 @default.
- W3192593361 cites W3039295546 @default.
- W3192593361 cites W3087818589 @default.
- W3192593361 cites W3133546126 @default.
- W3192593361 cites W3137066621 @default.
- W3192593361 doi "https://doi.org/10.7717/peerj-cs.662" @default.
- W3192593361 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8356651" @default.
- W3192593361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34435103" @default.
- W3192593361 hasPublicationYear "2021" @default.
- W3192593361 type Work @default.
- W3192593361 sameAs 3192593361 @default.
- W3192593361 citedByCount "9" @default.
- W3192593361 countsByYear W31925933612022 @default.
- W3192593361 countsByYear W31925933612023 @default.
- W3192593361 crossrefType "journal-article" @default.
- W3192593361 hasAuthorship W3192593361A5038631163 @default.
- W3192593361 hasAuthorship W3192593361A5068767089 @default.
- W3192593361 hasAuthorship W3192593361A5069253574 @default.
- W3192593361 hasAuthorship W3192593361A5077770842 @default.
- W3192593361 hasBestOaLocation W31925933611 @default.
- W3192593361 hasConcept C104317684 @default.
- W3192593361 hasConcept C111919701 @default.
- W3192593361 hasConcept C119599485 @default.
- W3192593361 hasConcept C119857082 @default.
- W3192593361 hasConcept C121332964 @default.
- W3192593361 hasConcept C124101348 @default.
- W3192593361 hasConcept C127413603 @default.
- W3192593361 hasConcept C141353440 @default.
- W3192593361 hasConcept C146978453 @default.
- W3192593361 hasConcept C151233233 @default.
- W3192593361 hasConcept C154945302 @default.
- W3192593361 hasConcept C157286648 @default.
- W3192593361 hasConcept C158488048 @default.
- W3192593361 hasConcept C185592680 @default.
- W3192593361 hasConcept C31972630 @default.
- W3192593361 hasConcept C33954974 @default.
- W3192593361 hasConcept C41008148 @default.
- W3192593361 hasConcept C55493867 @default.
- W3192593361 hasConcept C62520636 @default.
- W3192593361 hasConcept C63479239 @default.
- W3192593361 hasConcept C79061980 @default.
- W3192593361 hasConcept C79403827 @default.
- W3192593361 hasConcept C89805583 @default.
- W3192593361 hasConceptScore W3192593361C104317684 @default.
- W3192593361 hasConceptScore W3192593361C111919701 @default.
- W3192593361 hasConceptScore W3192593361C119599485 @default.
- W3192593361 hasConceptScore W3192593361C119857082 @default.
- W3192593361 hasConceptScore W3192593361C121332964 @default.
- W3192593361 hasConceptScore W3192593361C124101348 @default.
- W3192593361 hasConceptScore W3192593361C127413603 @default.
- W3192593361 hasConceptScore W3192593361C141353440 @default.
- W3192593361 hasConceptScore W3192593361C146978453 @default.
- W3192593361 hasConceptScore W3192593361C151233233 @default.
- W3192593361 hasConceptScore W3192593361C154945302 @default.