Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193007873> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3193007873 endingPage "4014" @default.
- W3193007873 startingPage "4001" @default.
- W3193007873 abstract "Spatial–temporal graph modeling plays an important role in the fields of transportation, meteorology, and social networks. Traffic flow prediction is a classic spatial–temporal modeling task. Existing methods usually do not take into account the asynchronous spatial–temporal correlation in traffic data. In addition, due to the complexity and variability of traffic data, long-term traffic forecasting is highly challenging. In order to solve the above problems, this article proposes a new deep learning-based asynchronous dilation graph convolution network (ADGCN) to model the spatial–temporal graphs. We mine the asynchronous spatial–temporal correlation in the traffic network, and propose the asynchronous spatial–temporal graph convolution (ASTGC) operation to extract this special relationship. Furthermore, we extend the dilated 1-D causal convolution to a graph convolution. The receptive field of the model increases exponentially with the increase of the network depth. Experiments are conducted on three public traffic data sets, and the results show that the prediction performance of ADGCN is better than the existing counterpart methods, especially in long-term prediction tasks." @default.
- W3193007873 created "2021-08-16" @default.
- W3193007873 creator A5004919779 @default.
- W3193007873 creator A5034823224 @default.
- W3193007873 creator A5041606758 @default.
- W3193007873 creator A5047063645 @default.
- W3193007873 date "2022-03-01" @default.
- W3193007873 modified "2023-10-14" @default.
- W3193007873 title "ADGCN: An Asynchronous Dilation Graph Convolutional Network for Traffic Flow Prediction" @default.
- W3193007873 cites W1711412747 @default.
- W3193007873 cites W1973943669 @default.
- W3193007873 cites W1983883318 @default.
- W3193007873 cites W2008483594 @default.
- W3193007873 cites W2038622450 @default.
- W3193007873 cites W2041567331 @default.
- W3193007873 cites W2058401212 @default.
- W3193007873 cites W2079662306 @default.
- W3193007873 cites W2101491865 @default.
- W3193007873 cites W2116341502 @default.
- W3193007873 cites W2125817951 @default.
- W3193007873 cites W2132711183 @default.
- W3193007873 cites W2145039203 @default.
- W3193007873 cites W2171234954 @default.
- W3193007873 cites W2530386080 @default.
- W3193007873 cites W2558460151 @default.
- W3193007873 cites W2565330852 @default.
- W3193007873 cites W2572939427 @default.
- W3193007873 cites W2626818931 @default.
- W3193007873 cites W2781156794 @default.
- W3193007873 cites W2808377988 @default.
- W3193007873 cites W2901504064 @default.
- W3193007873 cites W2904832339 @default.
- W3193007873 cites W2935726879 @default.
- W3193007873 cites W2965341826 @default.
- W3193007873 cites W2997848713 @default.
- W3193007873 cites W3107328345 @default.
- W3193007873 cites W3153924659 @default.
- W3193007873 doi "https://doi.org/10.1109/jiot.2021.3102238" @default.
- W3193007873 hasPublicationYear "2022" @default.
- W3193007873 type Work @default.
- W3193007873 sameAs 3193007873 @default.
- W3193007873 citedByCount "10" @default.
- W3193007873 countsByYear W31930078732022 @default.
- W3193007873 countsByYear W31930078732023 @default.
- W3193007873 crossrefType "journal-article" @default.
- W3193007873 hasAuthorship W3193007873A5004919779 @default.
- W3193007873 hasAuthorship W3193007873A5034823224 @default.
- W3193007873 hasAuthorship W3193007873A5041606758 @default.
- W3193007873 hasAuthorship W3193007873A5047063645 @default.
- W3193007873 hasConcept C114614502 @default.
- W3193007873 hasConcept C124101348 @default.
- W3193007873 hasConcept C132525143 @default.
- W3193007873 hasConcept C151319957 @default.
- W3193007873 hasConcept C154945302 @default.
- W3193007873 hasConcept C2780757906 @default.
- W3193007873 hasConcept C31258907 @default.
- W3193007873 hasConcept C33923547 @default.
- W3193007873 hasConcept C41008148 @default.
- W3193007873 hasConcept C45347329 @default.
- W3193007873 hasConcept C50644808 @default.
- W3193007873 hasConcept C80444323 @default.
- W3193007873 hasConceptScore W3193007873C114614502 @default.
- W3193007873 hasConceptScore W3193007873C124101348 @default.
- W3193007873 hasConceptScore W3193007873C132525143 @default.
- W3193007873 hasConceptScore W3193007873C151319957 @default.
- W3193007873 hasConceptScore W3193007873C154945302 @default.
- W3193007873 hasConceptScore W3193007873C2780757906 @default.
- W3193007873 hasConceptScore W3193007873C31258907 @default.
- W3193007873 hasConceptScore W3193007873C33923547 @default.
- W3193007873 hasConceptScore W3193007873C41008148 @default.
- W3193007873 hasConceptScore W3193007873C45347329 @default.
- W3193007873 hasConceptScore W3193007873C50644808 @default.
- W3193007873 hasConceptScore W3193007873C80444323 @default.
- W3193007873 hasFunder F4320309870 @default.
- W3193007873 hasFunder F4320321001 @default.
- W3193007873 hasIssue "5" @default.
- W3193007873 hasLocation W31930078731 @default.
- W3193007873 hasOpenAccess W3193007873 @default.
- W3193007873 hasPrimaryLocation W31930078731 @default.
- W3193007873 hasRelatedWork W143988449 @default.
- W3193007873 hasRelatedWork W2147711412 @default.
- W3193007873 hasRelatedWork W3014436429 @default.
- W3193007873 hasRelatedWork W3129634582 @default.
- W3193007873 hasRelatedWork W3193007873 @default.
- W3193007873 hasRelatedWork W4226487993 @default.
- W3193007873 hasRelatedWork W4283789226 @default.
- W3193007873 hasRelatedWork W4289827893 @default.
- W3193007873 hasRelatedWork W4293519063 @default.
- W3193007873 hasRelatedWork W4313525737 @default.
- W3193007873 hasVolume "9" @default.
- W3193007873 isParatext "false" @default.
- W3193007873 isRetracted "false" @default.
- W3193007873 magId "3193007873" @default.
- W3193007873 workType "article" @default.