Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193094911> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3193094911 abstract "Early detection of cardiac disease is one of the significant issue in healthcare industry and machine learning techniques are widely used by researchers for its early prediction. Therefore, the objective of this study is to find the performance analysis of different machine learning techniques used for cardiac disease prediction. The frequently used ML techniques decision tree(DT), Naïve Bayes (NB), k nearest neighbor (KNN), support vector machine (SVM), linear regression (LR) and multilayer perceptron (MLP) are evaluated at k-fold 5 and 10. For experimentation, the Cleveland, Hungarian, Switzerland and Va datasets from UCI repository are considered. Missing values in original datasets are filled with constant value. Accuracy, Misclassification rate, True Positive rate, True Negative Rate, False Positive rate, Precision, and F-Score are used for performance comparison. After experimental study, it is found that SVM and KNN classifiers gives the significant performance at k-fold 10." @default.
- W3193094911 created "2021-08-16" @default.
- W3193094911 creator A5005847782 @default.
- W3193094911 creator A5069978809 @default.
- W3193094911 date "2021-07-08" @default.
- W3193094911 modified "2023-10-14" @default.
- W3193094911 title "Performance Analysis of Machine Learning Techniques for Predicting Cardiac Disease" @default.
- W3193094911 cites W2020176002 @default.
- W3193094911 cites W2046661587 @default.
- W3193094911 cites W2092964187 @default.
- W3193094911 cites W2095554003 @default.
- W3193094911 cites W2102021287 @default.
- W3193094911 cites W2126667102 @default.
- W3193094911 cites W2411631905 @default.
- W3193094911 cites W2474914453 @default.
- W3193094911 cites W2521029800 @default.
- W3193094911 cites W2531733772 @default.
- W3193094911 cites W2585385891 @default.
- W3193094911 cites W2608803612 @default.
- W3193094911 cites W2903099708 @default.
- W3193094911 cites W2911830482 @default.
- W3193094911 cites W2913478458 @default.
- W3193094911 cites W2922256990 @default.
- W3193094911 cites W2949792355 @default.
- W3193094911 cites W2963842925 @default.
- W3193094911 cites W2966671057 @default.
- W3193094911 cites W2993413119 @default.
- W3193094911 cites W3015247626 @default.
- W3193094911 cites W3035142875 @default.
- W3193094911 cites W3044482460 @default.
- W3193094911 doi "https://doi.org/10.1109/icces51350.2021.9489197" @default.
- W3193094911 hasPublicationYear "2021" @default.
- W3193094911 type Work @default.
- W3193094911 sameAs 3193094911 @default.
- W3193094911 citedByCount "4" @default.
- W3193094911 countsByYear W31930949112022 @default.
- W3193094911 countsByYear W31930949112023 @default.
- W3193094911 crossrefType "proceedings-article" @default.
- W3193094911 hasAuthorship W3193094911A5005847782 @default.
- W3193094911 hasAuthorship W3193094911A5069978809 @default.
- W3193094911 hasConcept C105795698 @default.
- W3193094911 hasConcept C119857082 @default.
- W3193094911 hasConcept C12267149 @default.
- W3193094911 hasConcept C124101348 @default.
- W3193094911 hasConcept C153180895 @default.
- W3193094911 hasConcept C154945302 @default.
- W3193094911 hasConcept C179717631 @default.
- W3193094911 hasConcept C33923547 @default.
- W3193094911 hasConcept C41008148 @default.
- W3193094911 hasConcept C50644808 @default.
- W3193094911 hasConcept C52001869 @default.
- W3193094911 hasConcept C60908668 @default.
- W3193094911 hasConcept C83546350 @default.
- W3193094911 hasConcept C84525736 @default.
- W3193094911 hasConceptScore W3193094911C105795698 @default.
- W3193094911 hasConceptScore W3193094911C119857082 @default.
- W3193094911 hasConceptScore W3193094911C12267149 @default.
- W3193094911 hasConceptScore W3193094911C124101348 @default.
- W3193094911 hasConceptScore W3193094911C153180895 @default.
- W3193094911 hasConceptScore W3193094911C154945302 @default.
- W3193094911 hasConceptScore W3193094911C179717631 @default.
- W3193094911 hasConceptScore W3193094911C33923547 @default.
- W3193094911 hasConceptScore W3193094911C41008148 @default.
- W3193094911 hasConceptScore W3193094911C50644808 @default.
- W3193094911 hasConceptScore W3193094911C52001869 @default.
- W3193094911 hasConceptScore W3193094911C60908668 @default.
- W3193094911 hasConceptScore W3193094911C83546350 @default.
- W3193094911 hasConceptScore W3193094911C84525736 @default.
- W3193094911 hasLocation W31930949111 @default.
- W3193094911 hasOpenAccess W3193094911 @default.
- W3193094911 hasPrimaryLocation W31930949111 @default.
- W3193094911 hasRelatedWork W2907202588 @default.
- W3193094911 hasRelatedWork W2940336242 @default.
- W3193094911 hasRelatedWork W2984537336 @default.
- W3193094911 hasRelatedWork W3168994312 @default.
- W3193094911 hasRelatedWork W3185179407 @default.
- W3193094911 hasRelatedWork W3186233728 @default.
- W3193094911 hasRelatedWork W3202148033 @default.
- W3193094911 hasRelatedWork W4281994957 @default.
- W3193094911 hasRelatedWork W4312339038 @default.
- W3193094911 hasRelatedWork W4362711840 @default.
- W3193094911 isParatext "false" @default.
- W3193094911 isRetracted "false" @default.
- W3193094911 magId "3193094911" @default.
- W3193094911 workType "article" @default.