Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193145382> ?p ?o ?g. }
- W3193145382 endingPage "100103" @default.
- W3193145382 startingPage "100103" @default.
- W3193145382 abstract "The energy landscape for the Low-Voltage (LV) networks is undergoing rapid changes. These changes are driven by the increased penetration of distributed Low Carbon Technologies, both on the generation side (i.e. adoption of micro-renewables) and demand side (i.e. electric vehicle charging). The previously passive ‘fit-and-forget’ approach to LV network management is becoming increasing inefficient to ensure its effective operation. A more agile approach to operation and planning is needed, that includes pro-active prediction and mitigation of risks to local sub-networks (such as risk of voltage deviations out of legal limits). The mass rollout of smart meters (SMs) and advances in metering infrastructure holds the promise for smarter network management. However, many of the proposed methods require full observability, yet the expectation of being able to collect complete, error free data from every smart meter is unrealistic in operational reality. Furthermore, the smart meter (SM) roll-out has encountered significant issues, with the current voluntary nature of installation in the UK and in many other countries resulting in low-likelihood of full SM coverage for all LV networks. Even with a comprehensive SM roll-out privacy restrictions, constrain data availability from meters. To address these issues, this paper proposes the use of a Deep Learning Neural Network architecture to predict the voltage distribution with partial SM coverage on actual network operator LV circuits. The results show that SM measurements from key locations are sufficient for effective prediction of the voltage distribution, even without the use of the high granularity personal power demand data from individual customers." @default.
- W3193145382 created "2021-08-16" @default.
- W3193145382 creator A5001472716 @default.
- W3193145382 creator A5004064366 @default.
- W3193145382 creator A5032160199 @default.
- W3193145382 creator A5032799401 @default.
- W3193145382 creator A5041964500 @default.
- W3193145382 creator A5052097132 @default.
- W3193145382 creator A5071315397 @default.
- W3193145382 date "2021-12-01" @default.
- W3193145382 modified "2023-10-15" @default.
- W3193145382 title "Prediction of voltage distribution using deep learning and identified key smart meter locations" @default.
- W3193145382 cites W1499925099 @default.
- W3193145382 cites W1965607390 @default.
- W3193145382 cites W2058300150 @default.
- W3193145382 cites W2066384055 @default.
- W3193145382 cites W2117923429 @default.
- W3193145382 cites W2218409824 @default.
- W3193145382 cites W2227522135 @default.
- W3193145382 cites W2254328231 @default.
- W3193145382 cites W2329972552 @default.
- W3193145382 cites W2401391162 @default.
- W3193145382 cites W2553455317 @default.
- W3193145382 cites W2594248740 @default.
- W3193145382 cites W2609671361 @default.
- W3193145382 cites W2617936879 @default.
- W3193145382 cites W2619868118 @default.
- W3193145382 cites W2767708782 @default.
- W3193145382 cites W2892281961 @default.
- W3193145382 cites W2900280238 @default.
- W3193145382 cites W2908134003 @default.
- W3193145382 cites W2945318165 @default.
- W3193145382 cites W2966407329 @default.
- W3193145382 doi "https://doi.org/10.1016/j.egyai.2021.100103" @default.
- W3193145382 hasPublicationYear "2021" @default.
- W3193145382 type Work @default.
- W3193145382 sameAs 3193145382 @default.
- W3193145382 citedByCount "8" @default.
- W3193145382 countsByYear W31931453822021 @default.
- W3193145382 countsByYear W31931453822022 @default.
- W3193145382 countsByYear W31931453822023 @default.
- W3193145382 crossrefType "journal-article" @default.
- W3193145382 hasAuthorship W3193145382A5001472716 @default.
- W3193145382 hasAuthorship W3193145382A5004064366 @default.
- W3193145382 hasAuthorship W3193145382A5032160199 @default.
- W3193145382 hasAuthorship W3193145382A5032799401 @default.
- W3193145382 hasAuthorship W3193145382A5041964500 @default.
- W3193145382 hasAuthorship W3193145382A5052097132 @default.
- W3193145382 hasAuthorship W3193145382A5071315397 @default.
- W3193145382 hasBestOaLocation W31931453821 @default.
- W3193145382 hasConcept C10558101 @default.
- W3193145382 hasConcept C111919701 @default.
- W3193145382 hasConcept C115903868 @default.
- W3193145382 hasConcept C119599485 @default.
- W3193145382 hasConcept C121332964 @default.
- W3193145382 hasConcept C127413603 @default.
- W3193145382 hasConcept C1276947 @default.
- W3193145382 hasConcept C128624480 @default.
- W3193145382 hasConcept C14185376 @default.
- W3193145382 hasConcept C151011524 @default.
- W3193145382 hasConcept C165801399 @default.
- W3193145382 hasConcept C177774035 @default.
- W3193145382 hasConcept C188573790 @default.
- W3193145382 hasConcept C206658404 @default.
- W3193145382 hasConcept C26517878 @default.
- W3193145382 hasConcept C2779510800 @default.
- W3193145382 hasConcept C28826006 @default.
- W3193145382 hasConcept C30905978 @default.
- W3193145382 hasConcept C33923547 @default.
- W3193145382 hasConcept C36299963 @default.
- W3193145382 hasConcept C38652104 @default.
- W3193145382 hasConcept C41008148 @default.
- W3193145382 hasConcept C78519656 @default.
- W3193145382 hasConcept C79403827 @default.
- W3193145382 hasConceptScore W3193145382C10558101 @default.
- W3193145382 hasConceptScore W3193145382C111919701 @default.
- W3193145382 hasConceptScore W3193145382C115903868 @default.
- W3193145382 hasConceptScore W3193145382C119599485 @default.
- W3193145382 hasConceptScore W3193145382C121332964 @default.
- W3193145382 hasConceptScore W3193145382C127413603 @default.
- W3193145382 hasConceptScore W3193145382C1276947 @default.
- W3193145382 hasConceptScore W3193145382C128624480 @default.
- W3193145382 hasConceptScore W3193145382C14185376 @default.
- W3193145382 hasConceptScore W3193145382C151011524 @default.
- W3193145382 hasConceptScore W3193145382C165801399 @default.
- W3193145382 hasConceptScore W3193145382C177774035 @default.
- W3193145382 hasConceptScore W3193145382C188573790 @default.
- W3193145382 hasConceptScore W3193145382C206658404 @default.
- W3193145382 hasConceptScore W3193145382C26517878 @default.
- W3193145382 hasConceptScore W3193145382C2779510800 @default.
- W3193145382 hasConceptScore W3193145382C28826006 @default.
- W3193145382 hasConceptScore W3193145382C30905978 @default.
- W3193145382 hasConceptScore W3193145382C33923547 @default.
- W3193145382 hasConceptScore W3193145382C36299963 @default.
- W3193145382 hasConceptScore W3193145382C38652104 @default.
- W3193145382 hasConceptScore W3193145382C41008148 @default.
- W3193145382 hasConceptScore W3193145382C78519656 @default.
- W3193145382 hasConceptScore W3193145382C79403827 @default.