Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193253447> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3193253447 abstract "The effectiveness and dependability of real-time incident detection models directly impact the safety and operational conditions of the affected traffic routes. Recent advancements in cloud-based quantum computing infrastructure and developments in noisy intermediate-scale quantum devices have ushered in a new era of quantum-enhanced algorithms that can be utilized to enhance the accuracy of real-time incident detection. In this study, a combination of classical and quantum machine learning (ML) models is developed to identify incidents using connected vehicle (CV) data. The performance of the hybrid classical-quantum machine learning model in incident detection is compared to baseline classical ML models. The framework is evaluated using data from a microsimulation tool that simulates different incident scenarios. Results show that a hybrid neural network with a 4-qubit quantum layer outperforms all other baseline models considered in this study, even when training data is scarce. Three datasets made are DS-1 with enough training data, DS-2, and DS-3 without enough training data. The hybrid approach produces recall rates of 98.9%, 98.3%, and 96.6% for DS-1, DS-2, and DS-3, respectively. For DS-2 and DS-3, the hybrid model outperforms the classical models on average by 1.9% and 7.8%, respectively, for F2-score, a metric for the model’s ability to correctly recognize occurrences. These results indicate that in realistic scenarios with limited connected vehicles at certain times on specific roadways, the hybrid ML model performs better than classical models. As quantum computing infrastructure continues to improve, quantum ML models could offer a promising alternative for ML applications related to connected vehicles, especially when the available data is insufficient." @default.
- W3193253447 created "2021-08-16" @default.
- W3193253447 creator A5018848498 @default.
- W3193253447 creator A5028514087 @default.
- W3193253447 creator A5029237798 @default.
- W3193253447 creator A5056234324 @default.
- W3193253447 creator A5057506277 @default.
- W3193253447 creator A5075944301 @default.
- W3193253447 creator A5082637312 @default.
- W3193253447 creator A5088109829 @default.
- W3193253447 creator A5091542044 @default.
- W3193253447 creator A5091713208 @default.
- W3193253447 date "2023-06-28" @default.
- W3193253447 modified "2023-09-27" @default.
- W3193253447 title "Hybrid Quantum-Classical Neural Network for Incident Detection" @default.
- W3193253447 cites W2016301749 @default.
- W3193253447 cites W2035924096 @default.
- W3193253447 cites W2079018711 @default.
- W3193253447 cites W2101227080 @default.
- W3193253447 cites W2107950496 @default.
- W3193253447 cites W2111022684 @default.
- W3193253447 cites W2527189750 @default.
- W3193253447 cites W2531147647 @default.
- W3193253447 cites W2560504092 @default.
- W3193253447 cites W2771172925 @default.
- W3193253447 cites W2782719466 @default.
- W3193253447 cites W2798434869 @default.
- W3193253447 cites W2862150274 @default.
- W3193253447 cites W2904140568 @default.
- W3193253447 cites W2963521256 @default.
- W3193253447 cites W3032163196 @default.
- W3193253447 cites W3042497156 @default.
- W3193253447 cites W3086129031 @default.
- W3193253447 cites W3113826484 @default.
- W3193253447 cites W3116271006 @default.
- W3193253447 doi "https://doi.org/10.23919/fusion52260.2023.10224090" @default.
- W3193253447 hasPublicationYear "2023" @default.
- W3193253447 type Work @default.
- W3193253447 sameAs 3193253447 @default.
- W3193253447 citedByCount "0" @default.
- W3193253447 crossrefType "proceedings-article" @default.
- W3193253447 hasAuthorship W3193253447A5018848498 @default.
- W3193253447 hasAuthorship W3193253447A5028514087 @default.
- W3193253447 hasAuthorship W3193253447A5029237798 @default.
- W3193253447 hasAuthorship W3193253447A5056234324 @default.
- W3193253447 hasAuthorship W3193253447A5057506277 @default.
- W3193253447 hasAuthorship W3193253447A5075944301 @default.
- W3193253447 hasAuthorship W3193253447A5082637312 @default.
- W3193253447 hasAuthorship W3193253447A5088109829 @default.
- W3193253447 hasAuthorship W3193253447A5091542044 @default.
- W3193253447 hasAuthorship W3193253447A5091713208 @default.
- W3193253447 hasConcept C11413529 @default.
- W3193253447 hasConcept C115903868 @default.
- W3193253447 hasConcept C119857082 @default.
- W3193253447 hasConcept C121332964 @default.
- W3193253447 hasConcept C127413603 @default.
- W3193253447 hasConcept C154945302 @default.
- W3193253447 hasConcept C176217482 @default.
- W3193253447 hasConcept C21547014 @default.
- W3193253447 hasConcept C41008148 @default.
- W3193253447 hasConcept C50644808 @default.
- W3193253447 hasConcept C62520636 @default.
- W3193253447 hasConcept C77019957 @default.
- W3193253447 hasConcept C84114770 @default.
- W3193253447 hasConceptScore W3193253447C11413529 @default.
- W3193253447 hasConceptScore W3193253447C115903868 @default.
- W3193253447 hasConceptScore W3193253447C119857082 @default.
- W3193253447 hasConceptScore W3193253447C121332964 @default.
- W3193253447 hasConceptScore W3193253447C127413603 @default.
- W3193253447 hasConceptScore W3193253447C154945302 @default.
- W3193253447 hasConceptScore W3193253447C176217482 @default.
- W3193253447 hasConceptScore W3193253447C21547014 @default.
- W3193253447 hasConceptScore W3193253447C41008148 @default.
- W3193253447 hasConceptScore W3193253447C50644808 @default.
- W3193253447 hasConceptScore W3193253447C62520636 @default.
- W3193253447 hasConceptScore W3193253447C77019957 @default.
- W3193253447 hasConceptScore W3193253447C84114770 @default.
- W3193253447 hasFunder F4320309106 @default.
- W3193253447 hasLocation W31932534471 @default.
- W3193253447 hasOpenAccess W3193253447 @default.
- W3193253447 hasPrimaryLocation W31932534471 @default.
- W3193253447 hasRelatedWork W2961085424 @default.
- W3193253447 hasRelatedWork W3046775127 @default.
- W3193253447 hasRelatedWork W3112666563 @default.
- W3193253447 hasRelatedWork W3170094116 @default.
- W3193253447 hasRelatedWork W4285260836 @default.
- W3193253447 hasRelatedWork W4286629047 @default.
- W3193253447 hasRelatedWork W4287553039 @default.
- W3193253447 hasRelatedWork W4306321456 @default.
- W3193253447 hasRelatedWork W4306674287 @default.
- W3193253447 hasRelatedWork W4224009465 @default.
- W3193253447 isParatext "false" @default.
- W3193253447 isRetracted "false" @default.
- W3193253447 magId "3193253447" @default.
- W3193253447 workType "article" @default.