Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193259175> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3193259175 abstract "The Coronavirus Disease 2019 (COVID-19) pandemic has impacted many aspects of life globally, and a critical factor in mitigating its effects is screening individuals for infections, thereby allowing for both proper treatment for those individuals as well as action to be taken to prevent further spread of the virus. Point-of-care ultrasound (POCUS) imaging has been proposed as a screening tool as it is a much cheaper and easier to apply imaging modality than others that are traditionally used for pulmonary examinations, namely chest x-ray and computed tomography. Given the scarcity of expert radiologists for interpreting POCUS examinations in many highly affected regions around the world, low-cost deep learning-driven clinical decision support solutions can have a large impact during the on-going pandemic. Motivated by this, we introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images. Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi. Clinical validation was also conducted, where select cases were reviewed and reported on by a practicing clinician (20 years of clinical practice) specializing in intensive care (ICU) and 15 years of expertise in POCUS interpretation. To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative." @default.
- W3193259175 created "2021-08-16" @default.
- W3193259175 creator A5007303087 @default.
- W3193259175 creator A5024858545 @default.
- W3193259175 creator A5027704717 @default.
- W3193259175 creator A5034161060 @default.
- W3193259175 creator A5042681084 @default.
- W3193259175 creator A5067875645 @default.
- W3193259175 creator A5079766012 @default.
- W3193259175 creator A5080580861 @default.
- W3193259175 creator A5082474713 @default.
- W3193259175 date "2021-08-05" @default.
- W3193259175 modified "2023-10-16" @default.
- W3193259175 title "COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep Convolutional Neural Network Design for Detection of COVID-19 Patient Cases from Point-of-care Ultrasound Imaging" @default.
- W3193259175 cites W2060907966 @default.
- W3193259175 cites W2194775991 @default.
- W3193259175 cites W2802130527 @default.
- W3193259175 cites W2810271953 @default.
- W3193259175 cites W2889952609 @default.
- W3193259175 cites W2962835968 @default.
- W3193259175 cites W2964308564 @default.
- W3193259175 cites W2970752219 @default.
- W3193259175 cites W2981201742 @default.
- W3193259175 cites W3010604545 @default.
- W3193259175 cites W3016185001 @default.
- W3193259175 cites W3018936110 @default.
- W3193259175 cites W3028998477 @default.
- W3193259175 cites W3090836175 @default.
- W3193259175 cites W3105081694 @default.
- W3193259175 cites W3114166611 @default.
- W3193259175 cites W3121590924 @default.
- W3193259175 cites W3133600711 @default.
- W3193259175 cites W3136627259 @default.
- W3193259175 cites W3173717671 @default.
- W3193259175 hasPublicationYear "2021" @default.
- W3193259175 type Work @default.
- W3193259175 sameAs 3193259175 @default.
- W3193259175 citedByCount "0" @default.
- W3193259175 crossrefType "posted-content" @default.
- W3193259175 hasAuthorship W3193259175A5007303087 @default.
- W3193259175 hasAuthorship W3193259175A5024858545 @default.
- W3193259175 hasAuthorship W3193259175A5027704717 @default.
- W3193259175 hasAuthorship W3193259175A5034161060 @default.
- W3193259175 hasAuthorship W3193259175A5042681084 @default.
- W3193259175 hasAuthorship W3193259175A5067875645 @default.
- W3193259175 hasAuthorship W3193259175A5079766012 @default.
- W3193259175 hasAuthorship W3193259175A5080580861 @default.
- W3193259175 hasAuthorship W3193259175A5082474713 @default.
- W3193259175 hasConcept C108583219 @default.
- W3193259175 hasConcept C142724271 @default.
- W3193259175 hasConcept C154945302 @default.
- W3193259175 hasConcept C19527891 @default.
- W3193259175 hasConcept C2776214188 @default.
- W3193259175 hasConcept C2779134260 @default.
- W3193259175 hasConcept C3008058167 @default.
- W3193259175 hasConcept C41008148 @default.
- W3193259175 hasConcept C524204448 @default.
- W3193259175 hasConcept C71924100 @default.
- W3193259175 hasConcept C81363708 @default.
- W3193259175 hasConcept C89623803 @default.
- W3193259175 hasConceptScore W3193259175C108583219 @default.
- W3193259175 hasConceptScore W3193259175C142724271 @default.
- W3193259175 hasConceptScore W3193259175C154945302 @default.
- W3193259175 hasConceptScore W3193259175C19527891 @default.
- W3193259175 hasConceptScore W3193259175C2776214188 @default.
- W3193259175 hasConceptScore W3193259175C2779134260 @default.
- W3193259175 hasConceptScore W3193259175C3008058167 @default.
- W3193259175 hasConceptScore W3193259175C41008148 @default.
- W3193259175 hasConceptScore W3193259175C524204448 @default.
- W3193259175 hasConceptScore W3193259175C71924100 @default.
- W3193259175 hasConceptScore W3193259175C81363708 @default.
- W3193259175 hasConceptScore W3193259175C89623803 @default.
- W3193259175 hasLocation W31932591751 @default.
- W3193259175 hasOpenAccess W3193259175 @default.
- W3193259175 hasPrimaryLocation W31932591751 @default.
- W3193259175 hasRelatedWork W2745673637 @default.
- W3193259175 hasRelatedWork W2801917131 @default.
- W3193259175 hasRelatedWork W2946927056 @default.
- W3193259175 hasRelatedWork W2964233659 @default.
- W3193259175 hasRelatedWork W2985293072 @default.
- W3193259175 hasRelatedWork W3013042142 @default.
- W3193259175 hasRelatedWork W3082794569 @default.
- W3193259175 hasRelatedWork W3087934618 @default.
- W3193259175 hasRelatedWork W3125762068 @default.
- W3193259175 hasRelatedWork W3134798269 @default.
- W3193259175 hasRelatedWork W3149262220 @default.
- W3193259175 hasRelatedWork W3171849353 @default.
- W3193259175 hasRelatedWork W3176514713 @default.
- W3193259175 hasRelatedWork W3182276189 @default.
- W3193259175 hasRelatedWork W3184146535 @default.
- W3193259175 hasRelatedWork W3193983332 @default.
- W3193259175 hasRelatedWork W3199507972 @default.
- W3193259175 hasRelatedWork W3200186836 @default.
- W3193259175 hasRelatedWork W3203149529 @default.
- W3193259175 hasRelatedWork W3092334783 @default.
- W3193259175 isParatext "false" @default.
- W3193259175 isRetracted "false" @default.
- W3193259175 magId "3193259175" @default.
- W3193259175 workType "article" @default.