Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193300093> ?p ?o ?g. }
- W3193300093 endingPage "116646" @default.
- W3193300093 startingPage "116622" @default.
- W3193300093 abstract "Estimating and classifying depression status are critical in the clinical and psychological domains to map the course of treatment. Prior researchers used biosignal time-series data to reflect the variation in factors associated with depression. In addition, machine learning algorithms were applied to determine the underlying relationships between depressive symptoms and these factors. In this study, we introduce a classification framework for depression levels using actigraphy data based on machine learning algorithms. Fourteen circadian rhythm features (minimum, amplitude, alpha, beta, acrotime, upmesor, downmesor, mesor, f_pseudo, interdaily stability (IS), intradaily variability (IV), relative amplitude (RA), M10, and L5) extracted from accelerometer-based actigraphy data were used to model depression status with survey variables. Six evaluation metrics (accuracy, precision, recall, F1-score, receiver operating characteristic curve, and area under the curve) were applied to validate the performance of the proposed framework. Among the four candidate classifiers (XGBoost classifier, support vector classifier, multilayer perceptron, and logistic regression), the XGBoost classifier was the best at classifying depression levels. Moreover, we confirmed that the actigraphy data of two days were optimal for feature extraction and classification. The results of this study provide novel insights into the relationship between depression and physical activity in terms of both identification of depression and application of actigraphy data." @default.
- W3193300093 created "2021-08-30" @default.
- W3193300093 creator A5010561293 @default.
- W3193300093 creator A5041342083 @default.
- W3193300093 creator A5090647128 @default.
- W3193300093 date "2021-01-01" @default.
- W3193300093 modified "2023-10-05" @default.
- W3193300093 title "Depression Level Classification Using Machine Learning Classifiers Based on Actigraphy Data" @default.
- W3193300093 cites W1005459783 @default.
- W3193300093 cites W1588003045 @default.
- W3193300093 cites W1622243179 @default.
- W3193300093 cites W1761274382 @default.
- W3193300093 cites W1879995557 @default.
- W3193300093 cites W1969675850 @default.
- W3193300093 cites W1969692299 @default.
- W3193300093 cites W1981481816 @default.
- W3193300093 cites W1985726784 @default.
- W3193300093 cites W2000828587 @default.
- W3193300093 cites W2007609383 @default.
- W3193300093 cites W2015206320 @default.
- W3193300093 cites W2017732132 @default.
- W3193300093 cites W2025024951 @default.
- W3193300093 cites W2032948399 @default.
- W3193300093 cites W2039295692 @default.
- W3193300093 cites W2048055392 @default.
- W3193300093 cites W2052826833 @default.
- W3193300093 cites W2058920704 @default.
- W3193300093 cites W2066121889 @default.
- W3193300093 cites W2066821552 @default.
- W3193300093 cites W2070829156 @default.
- W3193300093 cites W2071797580 @default.
- W3193300093 cites W2078744362 @default.
- W3193300093 cites W2082669539 @default.
- W3193300093 cites W2095296120 @default.
- W3193300093 cites W2104247936 @default.
- W3193300093 cites W2105198309 @default.
- W3193300093 cites W2114273012 @default.
- W3193300093 cites W2119862467 @default.
- W3193300093 cites W2123446635 @default.
- W3193300093 cites W2126719297 @default.
- W3193300093 cites W2134056983 @default.
- W3193300093 cites W2142711398 @default.
- W3193300093 cites W2144167443 @default.
- W3193300093 cites W2144722423 @default.
- W3193300093 cites W2162203664 @default.
- W3193300093 cites W2167946814 @default.
- W3193300093 cites W2172019016 @default.
- W3193300093 cites W2257438637 @default.
- W3193300093 cites W2316197520 @default.
- W3193300093 cites W2442885172 @default.
- W3193300093 cites W2489362892 @default.
- W3193300093 cites W2559682755 @default.
- W3193300093 cites W2584403383 @default.
- W3193300093 cites W2585885738 @default.
- W3193300093 cites W2597345029 @default.
- W3193300093 cites W2606713734 @default.
- W3193300093 cites W2621633922 @default.
- W3193300093 cites W2697671268 @default.
- W3193300093 cites W2741429597 @default.
- W3193300093 cites W2748311435 @default.
- W3193300093 cites W2768276759 @default.
- W3193300093 cites W2884567958 @default.
- W3193300093 cites W2901099183 @default.
- W3193300093 cites W2919620237 @default.
- W3193300093 cites W2963998010 @default.
- W3193300093 cites W2965659963 @default.
- W3193300093 cites W2972575021 @default.
- W3193300093 cites W2986584240 @default.
- W3193300093 cites W2996625832 @default.
- W3193300093 cites W3005436344 @default.
- W3193300093 cites W3046043114 @default.
- W3193300093 cites W3102476541 @default.
- W3193300093 cites W3120274599 @default.
- W3193300093 cites W3123876770 @default.
- W3193300093 cites W3156331990 @default.
- W3193300093 cites W4245731142 @default.
- W3193300093 cites W4251537113 @default.
- W3193300093 cites W4255455317 @default.
- W3193300093 cites W2056292502 @default.
- W3193300093 doi "https://doi.org/10.1109/access.2021.3105393" @default.
- W3193300093 hasPublicationYear "2021" @default.
- W3193300093 type Work @default.
- W3193300093 sameAs 3193300093 @default.
- W3193300093 citedByCount "5" @default.
- W3193300093 countsByYear W31933000932023 @default.
- W3193300093 crossrefType "journal-article" @default.
- W3193300093 hasAuthorship W3193300093A5010561293 @default.
- W3193300093 hasAuthorship W3193300093A5041342083 @default.
- W3193300093 hasAuthorship W3193300093A5090647128 @default.
- W3193300093 hasBestOaLocation W31933000931 @default.
- W3193300093 hasConcept C119857082 @default.
- W3193300093 hasConcept C121446783 @default.
- W3193300093 hasConcept C12267149 @default.
- W3193300093 hasConcept C151956035 @default.
- W3193300093 hasConcept C153180895 @default.
- W3193300093 hasConcept C154945302 @default.
- W3193300093 hasConcept C15744967 @default.
- W3193300093 hasConcept C169760540 @default.