Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193405945> ?p ?o ?g. }
- W3193405945 endingPage "18" @default.
- W3193405945 startingPage "1" @default.
- W3193405945 abstract "Methodologies for unsupervised and semisupervised learning are reviewed. For unsupervised learning, or clustering, the focus is on mixture-model-based approaches under both the classic and mode association frameworks. High-dimensional data pose a major challenge for clustering. We thus discuss in detail variable selection and the hidden Markov model on variable blocks, which exploits a graph structure to simplify the dependence among variables. We also present topics that emerged relatively recently such as clustering distributional data under the Wasserstein metric and uncertainty assessment for cluster analysis. Semisupervised learning has attracted growing interest in the machine learning community in recent years. We review foundational approaches including self-training, semisupervised generative models, and graphical models. We then describe in greater depth entropy minimization, consistency regularization, and mixup augmentation, methods that are utilized in state-of-the-art models such as MixMatch." @default.
- W3193405945 created "2021-08-30" @default.
- W3193405945 creator A5043094331 @default.
- W3193405945 creator A5062428320 @default.
- W3193405945 date "2021-08-18" @default.
- W3193405945 modified "2023-09-23" @default.
- W3193405945 title "Unsupervised and Semisupervised Learning" @default.
- W3193405945 cites W108464071 @default.
- W3193405945 cites W109865423 @default.
- W3193405945 cites W1479807131 @default.
- W3193405945 cites W1528177290 @default.
- W3193405945 cites W1547480755 @default.
- W3193405945 cites W1965342088 @default.
- W3193405945 cites W1973264045 @default.
- W3193405945 cites W1984710611 @default.
- W3193405945 cites W1988529147 @default.
- W3193405945 cites W1994166982 @default.
- W3193405945 cites W2001141328 @default.
- W3193405945 cites W2002767255 @default.
- W3193405945 cites W2011832962 @default.
- W3193405945 cites W2016973429 @default.
- W3193405945 cites W2017818759 @default.
- W3193405945 cites W2024581784 @default.
- W3193405945 cites W2030009231 @default.
- W3193405945 cites W2032518018 @default.
- W3193405945 cites W2033403400 @default.
- W3193405945 cites W2036996178 @default.
- W3193405945 cites W2038738098 @default.
- W3193405945 cites W2039682702 @default.
- W3193405945 cites W2041565863 @default.
- W3193405945 cites W2047109555 @default.
- W3193405945 cites W2048178552 @default.
- W3193405945 cites W2056243712 @default.
- W3193405945 cites W2076280956 @default.
- W3193405945 cites W2079623157 @default.
- W3193405945 cites W2082503527 @default.
- W3193405945 cites W2085573033 @default.
- W3193405945 cites W2087501846 @default.
- W3193405945 cites W2087544865 @default.
- W3193405945 cites W2088756548 @default.
- W3193405945 cites W2097308346 @default.
- W3193405945 cites W2097645701 @default.
- W3193405945 cites W2101210369 @default.
- W3193405945 cites W2106401878 @default.
- W3193405945 cites W2109868644 @default.
- W3193405945 cites W2111316763 @default.
- W3193405945 cites W2114030927 @default.
- W3193405945 cites W2122210511 @default.
- W3193405945 cites W2125310307 @default.
- W3193405945 cites W2133556223 @default.
- W3193405945 cites W2134955300 @default.
- W3193405945 cites W2141376824 @default.
- W3193405945 cites W2158967769 @default.
- W3193405945 cites W2166866346 @default.
- W3193405945 cites W2170111518 @default.
- W3193405945 cites W2241871771 @default.
- W3193405945 cites W2250384498 @default.
- W3193405945 cites W2298250094 @default.
- W3193405945 cites W2342423616 @default.
- W3193405945 cites W2407712691 @default.
- W3193405945 cites W2416999725 @default.
- W3193405945 cites W2425246132 @default.
- W3193405945 cites W2755174797 @default.
- W3193405945 cites W2884001105 @default.
- W3193405945 cites W2884367402 @default.
- W3193405945 cites W2888947475 @default.
- W3193405945 cites W2891915897 @default.
- W3193405945 cites W2946090488 @default.
- W3193405945 cites W2954996726 @default.
- W3193405945 cites W2963349551 @default.
- W3193405945 cites W2963930099 @default.
- W3193405945 cites W2963995333 @default.
- W3193405945 cites W2964159205 @default.
- W3193405945 cites W2964331441 @default.
- W3193405945 cites W2984353870 @default.
- W3193405945 cites W3104318432 @default.
- W3193405945 cites W3105178084 @default.
- W3193405945 cites W3209458476 @default.
- W3193405945 cites W4235169531 @default.
- W3193405945 doi "https://doi.org/10.1002/9781118445112.stat08320" @default.
- W3193405945 hasPublicationYear "2021" @default.
- W3193405945 type Work @default.
- W3193405945 sameAs 3193405945 @default.
- W3193405945 citedByCount "0" @default.
- W3193405945 crossrefType "other" @default.
- W3193405945 hasAuthorship W3193405945A5043094331 @default.
- W3193405945 hasAuthorship W3193405945A5062428320 @default.
- W3193405945 hasConcept C106301342 @default.
- W3193405945 hasConcept C119857082 @default.
- W3193405945 hasConcept C121332964 @default.
- W3193405945 hasConcept C154945302 @default.
- W3193405945 hasConcept C155846161 @default.
- W3193405945 hasConcept C165696696 @default.
- W3193405945 hasConcept C167966045 @default.
- W3193405945 hasConcept C2776135515 @default.
- W3193405945 hasConcept C2776436953 @default.
- W3193405945 hasConcept C38652104 @default.
- W3193405945 hasConcept C39890363 @default.