Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193451857> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3193451857 endingPage "483" @default.
- W3193451857 startingPage "471" @default.
- W3193451857 abstract "Metalearning has been largely used over the last years to recommend machine learning algorithms for new problems based on past experience. For such, the first step is the creation of metabase, or metadataset, containing metafeatures extracted from several datasets along with the performance of a pool of candidate algorithm(s). The next step is the induction of machine learning metamodels using the metabase as input. These models can recommend the most suitable algorithms for new datasets based on their metafeatures values. An effective metalearning system must employ metafeatures that characterize essential aspects of the datasets while also distinguishing different problems and solutions. The characterization process should also show a low computational cost, otherwise, the recommendation system can be replaced by a standard trial-and-error approach. This paper proposes the use of an unsupervised correlation-based feature selection strategy to identify a reduced subset of metafeatures for metalearning systems. Empirically, the predictive performance achieved by metalearning systems using the subset of selected metafeatures is similar or better than the performance obtained using the whole set of metafeatures. In addition, a noteworthy reduction in the number of metafeatures needed is observed, implying computational cost reductions." @default.
- W3193451857 created "2021-08-30" @default.
- W3193451857 creator A5004221623 @default.
- W3193451857 creator A5036696970 @default.
- W3193451857 creator A5079499583 @default.
- W3193451857 creator A5079832994 @default.
- W3193451857 date "2021-01-01" @default.
- W3193451857 modified "2023-10-16" @default.
- W3193451857 title "A Study of the Correlation of Metafeatures Used for Metalearning" @default.
- W3193451857 cites W1494580925 @default.
- W3193451857 cites W1495775210 @default.
- W3193451857 cites W1563088657 @default.
- W3193451857 cites W1985514943 @default.
- W3193451857 cites W2089213632 @default.
- W3193451857 cites W2090136295 @default.
- W3193451857 cites W2132862423 @default.
- W3193451857 cites W2396961612 @default.
- W3193451857 cites W2775947831 @default.
- W3193451857 cites W2911627187 @default.
- W3193451857 cites W2911964244 @default.
- W3193451857 cites W2948164010 @default.
- W3193451857 cites W4252731897 @default.
- W3193451857 doi "https://doi.org/10.1007/978-3-030-85030-2_39" @default.
- W3193451857 hasPublicationYear "2021" @default.
- W3193451857 type Work @default.
- W3193451857 sameAs 3193451857 @default.
- W3193451857 citedByCount "1" @default.
- W3193451857 countsByYear W31934518572022 @default.
- W3193451857 crossrefType "book-chapter" @default.
- W3193451857 hasAuthorship W3193451857A5004221623 @default.
- W3193451857 hasAuthorship W3193451857A5036696970 @default.
- W3193451857 hasAuthorship W3193451857A5079499583 @default.
- W3193451857 hasAuthorship W3193451857A5079832994 @default.
- W3193451857 hasConcept C117220453 @default.
- W3193451857 hasConcept C154945302 @default.
- W3193451857 hasConcept C2524010 @default.
- W3193451857 hasConcept C33923547 @default.
- W3193451857 hasConcept C41008148 @default.
- W3193451857 hasConceptScore W3193451857C117220453 @default.
- W3193451857 hasConceptScore W3193451857C154945302 @default.
- W3193451857 hasConceptScore W3193451857C2524010 @default.
- W3193451857 hasConceptScore W3193451857C33923547 @default.
- W3193451857 hasConceptScore W3193451857C41008148 @default.
- W3193451857 hasLocation W31934518571 @default.
- W3193451857 hasOpenAccess W3193451857 @default.
- W3193451857 hasPrimaryLocation W31934518571 @default.
- W3193451857 hasRelatedWork W2055804614 @default.
- W3193451857 hasRelatedWork W2390279801 @default.
- W3193451857 hasRelatedWork W2400656187 @default.
- W3193451857 hasRelatedWork W2406712430 @default.
- W3193451857 hasRelatedWork W2748952813 @default.
- W3193451857 hasRelatedWork W2800517790 @default.
- W3193451857 hasRelatedWork W2899084033 @default.
- W3193451857 hasRelatedWork W2905504989 @default.
- W3193451857 hasRelatedWork W2913909795 @default.
- W3193451857 hasRelatedWork W3107474891 @default.
- W3193451857 isParatext "false" @default.
- W3193451857 isRetracted "false" @default.
- W3193451857 magId "3193451857" @default.
- W3193451857 workType "book-chapter" @default.