Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193455909> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3193455909 abstract "We propose a novel methodology to conduct whole-body organ-level dosimetry taking into account the heterogeneity of activity distribution as well as patient-specific anatomy using Monte Carlo (MC) simulations and machine learning algorithms. We extended the core idea of the voxel-scale MIRD approach that utilizes a single S-value kernel for internal dosimetry by generating specific S-value kernels corresponding to patient-specific anatomy. In this context, we employed deep learning algorithms to predict the deposited energy distribution, representing the S-value kernel. The training dataset consists of density maps obtained from CT images along with the ground-truth dose distribution obtained from MC simulations. Accordingly, whole-body dose maps are constructed through convolving specific S-values with the activity map. The Deep Neural Network (DNN) predicted dose map was compared with the reference (Monte Carlo-based) and two MIRD-based methods, including single-voxel S-value (SSV) and multiple voxel S-value (MSV) approaches. The Mean Relative Absolute Errors (MRAE) of the estimated absorbed dose between DNN, MSV, and SSV against reference MC simulations were 2.6%, 3%, and 49%, respectively. MRAEs of 23.5%, 5.1%, and 21.8% were obtained between the proposed method and MSV, SSV, and Olinda dosimetry package in organ-level dosimetry, respectively. The proposed internal dosimetry technique exhibited comparable performance to the direct Monte Carlo approach while overcoming the computational burden limitation of MC simulations." @default.
- W3193455909 created "2021-08-30" @default.
- W3193455909 creator A5007891293 @default.
- W3193455909 creator A5034625862 @default.
- W3193455909 creator A5036836472 @default.
- W3193455909 creator A5039181443 @default.
- W3193455909 date "2020-10-31" @default.
- W3193455909 modified "2023-10-18" @default.
- W3193455909 title "Deep Learning-Assisted Whole-Body Voxel-Based Internal Dosimetry" @default.
- W3193455909 cites W2038253228 @default.
- W3193455909 cites W2618677231 @default.
- W3193455909 cites W2773845120 @default.
- W3193455909 cites W2961264277 @default.
- W3193455909 cites W2982468271 @default.
- W3193455909 cites W2998208444 @default.
- W3193455909 cites W3019885855 @default.
- W3193455909 cites W3025094475 @default.
- W3193455909 cites W3081965108 @default.
- W3193455909 cites W3082693122 @default.
- W3193455909 cites W3088719758 @default.
- W3193455909 cites W3093519236 @default.
- W3193455909 doi "https://doi.org/10.1109/nss/mic42677.2020.9507983" @default.
- W3193455909 hasPublicationYear "2020" @default.
- W3193455909 type Work @default.
- W3193455909 sameAs 3193455909 @default.
- W3193455909 citedByCount "2" @default.
- W3193455909 countsByYear W31934559092021 @default.
- W3193455909 countsByYear W31934559092023 @default.
- W3193455909 crossrefType "proceedings-article" @default.
- W3193455909 hasAuthorship W3193455909A5007891293 @default.
- W3193455909 hasAuthorship W3193455909A5034625862 @default.
- W3193455909 hasAuthorship W3193455909A5036836472 @default.
- W3193455909 hasAuthorship W3193455909A5039181443 @default.
- W3193455909 hasConcept C105795698 @default.
- W3193455909 hasConcept C11413529 @default.
- W3193455909 hasConcept C114614502 @default.
- W3193455909 hasConcept C151730666 @default.
- W3193455909 hasConcept C154945302 @default.
- W3193455909 hasConcept C19499675 @default.
- W3193455909 hasConcept C2778019345 @default.
- W3193455909 hasConcept C2779185275 @default.
- W3193455909 hasConcept C2779343474 @default.
- W3193455909 hasConcept C2781184130 @default.
- W3193455909 hasConcept C2989005 @default.
- W3193455909 hasConcept C33923547 @default.
- W3193455909 hasConcept C41008148 @default.
- W3193455909 hasConcept C502942594 @default.
- W3193455909 hasConcept C50644808 @default.
- W3193455909 hasConcept C54170458 @default.
- W3193455909 hasConcept C71924100 @default.
- W3193455909 hasConcept C74193536 @default.
- W3193455909 hasConcept C75088862 @default.
- W3193455909 hasConcept C86803240 @default.
- W3193455909 hasConceptScore W3193455909C105795698 @default.
- W3193455909 hasConceptScore W3193455909C11413529 @default.
- W3193455909 hasConceptScore W3193455909C114614502 @default.
- W3193455909 hasConceptScore W3193455909C151730666 @default.
- W3193455909 hasConceptScore W3193455909C154945302 @default.
- W3193455909 hasConceptScore W3193455909C19499675 @default.
- W3193455909 hasConceptScore W3193455909C2778019345 @default.
- W3193455909 hasConceptScore W3193455909C2779185275 @default.
- W3193455909 hasConceptScore W3193455909C2779343474 @default.
- W3193455909 hasConceptScore W3193455909C2781184130 @default.
- W3193455909 hasConceptScore W3193455909C2989005 @default.
- W3193455909 hasConceptScore W3193455909C33923547 @default.
- W3193455909 hasConceptScore W3193455909C41008148 @default.
- W3193455909 hasConceptScore W3193455909C502942594 @default.
- W3193455909 hasConceptScore W3193455909C50644808 @default.
- W3193455909 hasConceptScore W3193455909C54170458 @default.
- W3193455909 hasConceptScore W3193455909C71924100 @default.
- W3193455909 hasConceptScore W3193455909C74193536 @default.
- W3193455909 hasConceptScore W3193455909C75088862 @default.
- W3193455909 hasConceptScore W3193455909C86803240 @default.
- W3193455909 hasFunder F4320320924 @default.
- W3193455909 hasFunder F4320325384 @default.
- W3193455909 hasFunder F4320327941 @default.
- W3193455909 hasLocation W31934559091 @default.
- W3193455909 hasOpenAccess W3193455909 @default.
- W3193455909 hasPrimaryLocation W31934559091 @default.
- W3193455909 hasRelatedWork W1565812809 @default.
- W3193455909 hasRelatedWork W1976011493 @default.
- W3193455909 hasRelatedWork W1982008128 @default.
- W3193455909 hasRelatedWork W2056268766 @default.
- W3193455909 hasRelatedWork W2802922010 @default.
- W3193455909 hasRelatedWork W2961264277 @default.
- W3193455909 hasRelatedWork W3135807925 @default.
- W3193455909 hasRelatedWork W3193455909 @default.
- W3193455909 hasRelatedWork W4214596006 @default.
- W3193455909 hasRelatedWork W4316020654 @default.
- W3193455909 isParatext "false" @default.
- W3193455909 isRetracted "false" @default.
- W3193455909 magId "3193455909" @default.
- W3193455909 workType "article" @default.