Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193458527> ?p ?o ?g. }
- W3193458527 endingPage "625" @default.
- W3193458527 startingPage "610" @default.
- W3193458527 abstract "This analysis, using data from the Brazilian kidney transplant (KT) COVID-19 study, seeks to develop a prediction score to assist in COVID-19 risk stratification in KT recipients. In this study, 1379 patients (35 sites) were enrolled, and a machine learning approach was used to fit models in a derivation cohort. A reduced Elastic Net model was selected, and the accuracy to predict the 28-day fatality after the COVID-19 diagnosis, assessed by the area under the ROC curve (AUC-ROC), was confirmed in a validation cohort. The better calibration values were used to build the applicable ImAgeS score. The 28-day fatality rate was 17% (n = 235), which was associated with increasing age, hypertension and cardiovascular disease, higher body mass index, dyspnea, and use of mycophenolate acid or azathioprine. Higher kidney graft function, longer time of symptoms until COVID-19 diagnosis, presence of anosmia or coryza, and use of mTOR inhibitor were associated with reduced risk of death. The coefficients of the best model were used to build the predictive score, which achieved an AUC-ROC of 0.767 (95% CI 0.698-0.834) in the validation cohort. In conclusion, the easily applicable predictive model could assist health care practitioners in identifying non-hospitalized kidney transplant patients that may require more intensive monitoring. Trial registration: ClinicalTrials.gov NCT04494776." @default.
- W3193458527 created "2021-08-30" @default.
- W3193458527 creator A5004810096 @default.
- W3193458527 creator A5007378217 @default.
- W3193458527 creator A5010474113 @default.
- W3193458527 creator A5013330308 @default.
- W3193458527 creator A5017552956 @default.
- W3193458527 creator A5022962463 @default.
- W3193458527 creator A5028751705 @default.
- W3193458527 creator A5031433657 @default.
- W3193458527 creator A5031510699 @default.
- W3193458527 creator A5034069058 @default.
- W3193458527 creator A5036583891 @default.
- W3193458527 creator A5038402597 @default.
- W3193458527 creator A5038875933 @default.
- W3193458527 creator A5045733234 @default.
- W3193458527 creator A5051523607 @default.
- W3193458527 creator A5058877641 @default.
- W3193458527 creator A5061225023 @default.
- W3193458527 creator A5062622682 @default.
- W3193458527 creator A5068170530 @default.
- W3193458527 creator A5068577018 @default.
- W3193458527 creator A5072712065 @default.
- W3193458527 creator A5086459884 @default.
- W3193458527 creator A5088818307 @default.
- W3193458527 date "2022-02-01" @default.
- W3193458527 modified "2023-10-18" @default.
- W3193458527 title "Development and validation of a simple web-based tool for early prediction of COVID-19-associated death in kidney transplant recipients" @default.
- W3193458527 cites W1971654961 @default.
- W3193458527 cites W1994682257 @default.
- W3193458527 cites W2020925091 @default.
- W3193458527 cites W2050021714 @default.
- W3193458527 cites W2093274439 @default.
- W3193458527 cites W2148143831 @default.
- W3193458527 cites W2155965977 @default.
- W3193458527 cites W2334985728 @default.
- W3193458527 cites W2607031541 @default.
- W3193458527 cites W3009885589 @default.
- W3193458527 cites W3011072970 @default.
- W3193458527 cites W3012083138 @default.
- W3193458527 cites W3012867801 @default.
- W3193458527 cites W3014294089 @default.
- W3193458527 cites W3014524604 @default.
- W3193458527 cites W3016535995 @default.
- W3193458527 cites W3016655060 @default.
- W3193458527 cites W3017734961 @default.
- W3193458527 cites W3022298391 @default.
- W3193458527 cites W3023692003 @default.
- W3193458527 cites W3024853795 @default.
- W3193458527 cites W3025394897 @default.
- W3193458527 cites W3025969587 @default.
- W3193458527 cites W3035417125 @default.
- W3193458527 cites W3042796991 @default.
- W3193458527 cites W3044058265 @default.
- W3193458527 cites W3045252049 @default.
- W3193458527 cites W3046144720 @default.
- W3193458527 cites W3046416781 @default.
- W3193458527 cites W3046806318 @default.
- W3193458527 cites W3047144258 @default.
- W3193458527 cites W3047268902 @default.
- W3193458527 cites W3050078981 @default.
- W3193458527 cites W3080100125 @default.
- W3193458527 cites W3080827234 @default.
- W3193458527 cites W3082355253 @default.
- W3193458527 cites W3083806257 @default.
- W3193458527 cites W3089822710 @default.
- W3193458527 cites W3090115387 @default.
- W3193458527 cites W3092999780 @default.
- W3193458527 cites W3093216077 @default.
- W3193458527 cites W3097306544 @default.
- W3193458527 cites W3102902405 @default.
- W3193458527 cites W3108830857 @default.
- W3193458527 cites W3109036355 @default.
- W3193458527 cites W3110410930 @default.
- W3193458527 cites W3110999355 @default.
- W3193458527 cites W3116705601 @default.
- W3193458527 cites W3120366519 @default.
- W3193458527 cites W3126570147 @default.
- W3193458527 cites W3132116027 @default.
- W3193458527 cites W3134335056 @default.
- W3193458527 cites W3139064077 @default.
- W3193458527 cites W3158948419 @default.
- W3193458527 cites W3165656738 @default.
- W3193458527 cites W4210642183 @default.
- W3193458527 doi "https://doi.org/10.1111/ajt.16807" @default.
- W3193458527 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8441938" @default.
- W3193458527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34416075" @default.
- W3193458527 hasPublicationYear "2022" @default.
- W3193458527 type Work @default.
- W3193458527 sameAs 3193458527 @default.
- W3193458527 citedByCount "13" @default.
- W3193458527 countsByYear W31934585272022 @default.
- W3193458527 countsByYear W31934585272023 @default.
- W3193458527 crossrefType "journal-article" @default.
- W3193458527 hasAuthorship W3193458527A5004810096 @default.
- W3193458527 hasAuthorship W3193458527A5007378217 @default.
- W3193458527 hasAuthorship W3193458527A5010474113 @default.
- W3193458527 hasAuthorship W3193458527A5013330308 @default.