Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193507803> ?p ?o ?g. }
- W3193507803 endingPage "166" @default.
- W3193507803 startingPage "156" @default.
- W3193507803 abstract "This review presents the applications of artificial intelligence for the study of the mechanisms of diabetes development and generation of new technologies of its prevention, monitoring and treatment. In recent years, a huge amount of molecular data has been accumulated, revealing the pathogenic mechanisms of diabetes and its complications. Data mining and text mining open up new possibilities for processing this information. Analysis of gene networks makes it possible to identify molecular interactions that are important for the development of diabetes and its complications, as well as to identify new targeted molecules. Based on the big data analysis and machine learning, new platforms have been created for prediction and screening of diabetes, diabetic retinopathy, chronic kidney disease, and cardiovascular disease. Machine learning algorithms are applied for personalized prediction of glucose trends, in the closed-loop insulin delivery systems and decision support systems for lifestyle modification and diabetes treatment. The use of artificial intelligence for the analysis of large databases, registers, and real-world evidence studies seems to be promising. The introduction of artificial intelligence systems is in line with global trends in modern medicine, including the transition to digital and distant technologies, personification of treatment, high-precision forecasting and patient-centered care. There is an urgent need for further research in this field, with an assessment of the clinical effectiveness and economic feasibility." @default.
- W3193507803 created "2021-08-30" @default.
- W3193507803 creator A5038841115 @default.
- W3193507803 creator A5057139922 @default.
- W3193507803 creator A5062347074 @default.
- W3193507803 date "2021-07-14" @default.
- W3193507803 modified "2023-09-26" @default.
- W3193507803 title "Artificial intelligence in diabetology" @default.
- W3193507803 cites W1498417717 @default.
- W3193507803 cites W2099889406 @default.
- W3193507803 cites W2102839669 @default.
- W3193507803 cites W2125118217 @default.
- W3193507803 cites W2229409572 @default.
- W3193507803 cites W2293105777 @default.
- W3193507803 cites W2405777913 @default.
- W3193507803 cites W2513134041 @default.
- W3193507803 cites W2524803224 @default.
- W3193507803 cites W2528953779 @default.
- W3193507803 cites W2580312941 @default.
- W3193507803 cites W2592382322 @default.
- W3193507803 cites W2605708433 @default.
- W3193507803 cites W2612292012 @default.
- W3193507803 cites W2742286538 @default.
- W3193507803 cites W2742950648 @default.
- W3193507803 cites W2754879033 @default.
- W3193507803 cites W2756625313 @default.
- W3193507803 cites W2778596258 @default.
- W3193507803 cites W2798891231 @default.
- W3193507803 cites W2803110738 @default.
- W3193507803 cites W2804354698 @default.
- W3193507803 cites W2903896358 @default.
- W3193507803 cites W2911787208 @default.
- W3193507803 cites W2912105929 @default.
- W3193507803 cites W2914739803 @default.
- W3193507803 cites W2914959816 @default.
- W3193507803 cites W2919115771 @default.
- W3193507803 cites W2922157919 @default.
- W3193507803 cites W2925312322 @default.
- W3193507803 cites W2936703463 @default.
- W3193507803 cites W2937326682 @default.
- W3193507803 cites W2943761611 @default.
- W3193507803 cites W2945447024 @default.
- W3193507803 cites W2945583287 @default.
- W3193507803 cites W2946061185 @default.
- W3193507803 cites W2946814533 @default.
- W3193507803 cites W2953429651 @default.
- W3193507803 cites W2964147226 @default.
- W3193507803 cites W2968847082 @default.
- W3193507803 cites W2969756003 @default.
- W3193507803 cites W2971123115 @default.
- W3193507803 cites W2973516653 @default.
- W3193507803 cites W2980370581 @default.
- W3193507803 cites W2980407603 @default.
- W3193507803 cites W2980823878 @default.
- W3193507803 cites W2981121978 @default.
- W3193507803 cites W2986446268 @default.
- W3193507803 cites W2988620852 @default.
- W3193507803 cites W2988860641 @default.
- W3193507803 cites W2993074729 @default.
- W3193507803 cites W3003439489 @default.
- W3193507803 cites W3003987518 @default.
- W3193507803 cites W3010682727 @default.
- W3193507803 cites W3016344200 @default.
- W3193507803 cites W3024118039 @default.
- W3193507803 cites W3025370095 @default.
- W3193507803 cites W3031602164 @default.
- W3193507803 cites W3033240123 @default.
- W3193507803 cites W3034950318 @default.
- W3193507803 cites W3106293266 @default.
- W3193507803 cites W3208674021 @default.
- W3193507803 cites W4234556776 @default.
- W3193507803 doi "https://doi.org/10.14341/dm12665" @default.
- W3193507803 hasPublicationYear "2021" @default.
- W3193507803 type Work @default.
- W3193507803 sameAs 3193507803 @default.
- W3193507803 citedByCount "3" @default.
- W3193507803 countsByYear W31935078032021 @default.
- W3193507803 countsByYear W31935078032023 @default.
- W3193507803 crossrefType "journal-article" @default.
- W3193507803 hasAuthorship W3193507803A5038841115 @default.
- W3193507803 hasAuthorship W3193507803A5057139922 @default.
- W3193507803 hasAuthorship W3193507803A5062347074 @default.
- W3193507803 hasBestOaLocation W31935078031 @default.
- W3193507803 hasConcept C119857082 @default.
- W3193507803 hasConcept C124101348 @default.
- W3193507803 hasConcept C126322002 @default.
- W3193507803 hasConcept C134018914 @default.
- W3193507803 hasConcept C142724271 @default.
- W3193507803 hasConcept C154945302 @default.
- W3193507803 hasConcept C163763905 @default.
- W3193507803 hasConcept C2522767166 @default.
- W3193507803 hasConcept C2779134260 @default.
- W3193507803 hasConcept C2779851975 @default.
- W3193507803 hasConcept C2781232474 @default.
- W3193507803 hasConcept C2994527087 @default.
- W3193507803 hasConcept C41008148 @default.
- W3193507803 hasConcept C555293320 @default.
- W3193507803 hasConcept C71924100 @default.