Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193611198> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3193611198 abstract "The blood smear analysis provides vital information and forms the basis to diagnose most of the diseases. With recent developments, deep learning methods can analyze the microscopic blood sample using image processing and classification tasks with less human effort and increased accuracy. In this work, embarking upon domain-specific feature extraction and active learning, we propose a compact, yet efficient feature fusion ensemble-based architecture for WBC sub-class classification and WBC disease identification which can automate and speed up the process of blood smear analysis with the help of digital image slide scanners.The proposed architecture is a three-stage multi-channel architecture with shallow feature inputs, deep feature extractors, and classification stages, respectively. The trainable parameters are quite less in our architecture when compared to deeper networks like ResNet 152, VGG19, which are the State of the Art (SOTA) methods [1], [2], [3]. However, labeling large medical data sets has been challenging and very costly. To mitigate huge labeling requirements and costs, Active Learning is employed to train this architecture and demonstrated much higher accuracy with quite less labeled data than SOTA. The proposed approach is shown to be quite general and yields better performance in terms of accuracy in WBC classification and Disease identification as well, with much fewer labeled samples for training, when compared with recent approaches employing deeper models." @default.
- W3193611198 created "2021-08-30" @default.
- W3193611198 creator A5014702481 @default.
- W3193611198 creator A5066157074 @default.
- W3193611198 date "2021-09-19" @default.
- W3193611198 modified "2023-09-26" @default.
- W3193611198 title "Feature Fusion Ensemble Architecture With Active Learning For Microscopic Blood Smear Analysis" @default.
- W3193611198 cites W1535386177 @default.
- W3193611198 cites W2080860745 @default.
- W3193611198 cites W2166098853 @default.
- W3193611198 cites W2170796084 @default.
- W3193611198 cites W2757686756 @default.
- W3193611198 cites W2799926361 @default.
- W3193611198 cites W2990527191 @default.
- W3193611198 cites W3099206234 @default.
- W3193611198 cites W3111541491 @default.
- W3193611198 doi "https://doi.org/10.1109/icip42928.2021.9506535" @default.
- W3193611198 hasPublicationYear "2021" @default.
- W3193611198 type Work @default.
- W3193611198 sameAs 3193611198 @default.
- W3193611198 citedByCount "0" @default.
- W3193611198 crossrefType "proceedings-article" @default.
- W3193611198 hasAuthorship W3193611198A5014702481 @default.
- W3193611198 hasAuthorship W3193611198A5066157074 @default.
- W3193611198 hasConcept C108583219 @default.
- W3193611198 hasConcept C116834253 @default.
- W3193611198 hasConcept C119857082 @default.
- W3193611198 hasConcept C123657996 @default.
- W3193611198 hasConcept C124101348 @default.
- W3193611198 hasConcept C138885662 @default.
- W3193611198 hasConcept C142362112 @default.
- W3193611198 hasConcept C153180895 @default.
- W3193611198 hasConcept C153349607 @default.
- W3193611198 hasConcept C154945302 @default.
- W3193611198 hasConcept C2776401178 @default.
- W3193611198 hasConcept C41008148 @default.
- W3193611198 hasConcept C41895202 @default.
- W3193611198 hasConcept C45942800 @default.
- W3193611198 hasConcept C52622490 @default.
- W3193611198 hasConcept C59822182 @default.
- W3193611198 hasConcept C86803240 @default.
- W3193611198 hasConceptScore W3193611198C108583219 @default.
- W3193611198 hasConceptScore W3193611198C116834253 @default.
- W3193611198 hasConceptScore W3193611198C119857082 @default.
- W3193611198 hasConceptScore W3193611198C123657996 @default.
- W3193611198 hasConceptScore W3193611198C124101348 @default.
- W3193611198 hasConceptScore W3193611198C138885662 @default.
- W3193611198 hasConceptScore W3193611198C142362112 @default.
- W3193611198 hasConceptScore W3193611198C153180895 @default.
- W3193611198 hasConceptScore W3193611198C153349607 @default.
- W3193611198 hasConceptScore W3193611198C154945302 @default.
- W3193611198 hasConceptScore W3193611198C2776401178 @default.
- W3193611198 hasConceptScore W3193611198C41008148 @default.
- W3193611198 hasConceptScore W3193611198C41895202 @default.
- W3193611198 hasConceptScore W3193611198C45942800 @default.
- W3193611198 hasConceptScore W3193611198C52622490 @default.
- W3193611198 hasConceptScore W3193611198C59822182 @default.
- W3193611198 hasConceptScore W3193611198C86803240 @default.
- W3193611198 hasLocation W31936111981 @default.
- W3193611198 hasOpenAccess W3193611198 @default.
- W3193611198 hasPrimaryLocation W31936111981 @default.
- W3193611198 hasRelatedWork W2546942002 @default.
- W3193611198 hasRelatedWork W2733060750 @default.
- W3193611198 hasRelatedWork W2773120646 @default.
- W3193611198 hasRelatedWork W2810053714 @default.
- W3193611198 hasRelatedWork W2946016983 @default.
- W3193611198 hasRelatedWork W3136979370 @default.
- W3193611198 hasRelatedWork W3156786002 @default.
- W3193611198 hasRelatedWork W3162132941 @default.
- W3193611198 hasRelatedWork W4308112567 @default.
- W3193611198 hasRelatedWork W4318482810 @default.
- W3193611198 isParatext "false" @default.
- W3193611198 isRetracted "false" @default.
- W3193611198 magId "3193611198" @default.
- W3193611198 workType "article" @default.