Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193635235> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3193635235 endingPage "7736" @default.
- W3193635235 startingPage "7736" @default.
- W3193635235 abstract "Ichnological analysis, particularly assessing bioturbation index, provides critical parameters for characterizing many oil and gas reservoirs. It provides information on reservoir quality, paleodepositional conditions, redox conditions, and more. However, accurately characterizing ichnological characteristics requires long hours of training and practice, and many marine or marginal marine reservoirs require these specialized expertise. This adds more load to geoscientists and may cause distraction, errors, and bias, particularly when continuously logging long sedimentary successions. In order to alleviate this issue, we propose an automated technique to determine the bioturbation index in cores and outcrops by harnessing the capabilities of deep convolutional neural networks (DCNNs) as image classifiers. In order to find a fast and robust solution, we utilize ideas from deep learning. We compiled and labeled a large data set (1303 images) composed of images spanning the full range (BI 0–6) of bioturbation indices. We divided these images into groups based on their bioturbation indices in order to prepare training data for the DCNN. Finally, we analyzed the trained DCNN model on images and obtained high classification accuracies. This is a pioneering work in the field of ichnological analysis, as the current practice is to perform classification tasks manually by experts in the field." @default.
- W3193635235 created "2021-08-30" @default.
- W3193635235 creator A5003097338 @default.
- W3193635235 creator A5028675144 @default.
- W3193635235 creator A5082388493 @default.
- W3193635235 creator A5083600826 @default.
- W3193635235 date "2021-08-22" @default.
- W3193635235 modified "2023-10-06" @default.
- W3193635235 title "Deep Learning Applications in Geosciences: Insights into Ichnological Analysis" @default.
- W3193635235 cites W2065536963 @default.
- W3193635235 cites W2088381531 @default.
- W3193635235 cites W2192490761 @default.
- W3193635235 cites W2244250363 @default.
- W3193635235 cites W2341213833 @default.
- W3193635235 cites W2618530766 @default.
- W3193635235 cites W2746710541 @default.
- W3193635235 cites W2782100134 @default.
- W3193635235 cites W2887782657 @default.
- W3193635235 cites W2931285398 @default.
- W3193635235 cites W2961712109 @default.
- W3193635235 cites W2971157782 @default.
- W3193635235 cites W2979483515 @default.
- W3193635235 cites W2981230744 @default.
- W3193635235 cites W2985504740 @default.
- W3193635235 cites W3000100760 @default.
- W3193635235 cites W3082165243 @default.
- W3193635235 cites W3168868253 @default.
- W3193635235 doi "https://doi.org/10.3390/app11167736" @default.
- W3193635235 hasPublicationYear "2021" @default.
- W3193635235 type Work @default.
- W3193635235 sameAs 3193635235 @default.
- W3193635235 citedByCount "2" @default.
- W3193635235 countsByYear W31936352352022 @default.
- W3193635235 countsByYear W31936352352023 @default.
- W3193635235 crossrefType "journal-article" @default.
- W3193635235 hasAuthorship W3193635235A5003097338 @default.
- W3193635235 hasAuthorship W3193635235A5028675144 @default.
- W3193635235 hasAuthorship W3193635235A5082388493 @default.
- W3193635235 hasAuthorship W3193635235A5083600826 @default.
- W3193635235 hasBestOaLocation W31936352351 @default.
- W3193635235 hasConcept C108583219 @default.
- W3193635235 hasConcept C119857082 @default.
- W3193635235 hasConcept C127313418 @default.
- W3193635235 hasConcept C151730666 @default.
- W3193635235 hasConcept C153018869 @default.
- W3193635235 hasConcept C154945302 @default.
- W3193635235 hasConcept C160937034 @default.
- W3193635235 hasConcept C186847809 @default.
- W3193635235 hasConcept C202444582 @default.
- W3193635235 hasConcept C2816523 @default.
- W3193635235 hasConcept C33923547 @default.
- W3193635235 hasConcept C41008148 @default.
- W3193635235 hasConcept C81363708 @default.
- W3193635235 hasConcept C9652623 @default.
- W3193635235 hasConceptScore W3193635235C108583219 @default.
- W3193635235 hasConceptScore W3193635235C119857082 @default.
- W3193635235 hasConceptScore W3193635235C127313418 @default.
- W3193635235 hasConceptScore W3193635235C151730666 @default.
- W3193635235 hasConceptScore W3193635235C153018869 @default.
- W3193635235 hasConceptScore W3193635235C154945302 @default.
- W3193635235 hasConceptScore W3193635235C160937034 @default.
- W3193635235 hasConceptScore W3193635235C186847809 @default.
- W3193635235 hasConceptScore W3193635235C202444582 @default.
- W3193635235 hasConceptScore W3193635235C2816523 @default.
- W3193635235 hasConceptScore W3193635235C33923547 @default.
- W3193635235 hasConceptScore W3193635235C41008148 @default.
- W3193635235 hasConceptScore W3193635235C81363708 @default.
- W3193635235 hasConceptScore W3193635235C9652623 @default.
- W3193635235 hasIssue "16" @default.
- W3193635235 hasLocation W31936352351 @default.
- W3193635235 hasOpenAccess W3193635235 @default.
- W3193635235 hasPrimaryLocation W31936352351 @default.
- W3193635235 hasRelatedWork W1440275437 @default.
- W3193635235 hasRelatedWork W227185993 @default.
- W3193635235 hasRelatedWork W2553271785 @default.
- W3193635235 hasRelatedWork W3029198973 @default.
- W3193635235 hasRelatedWork W3133861977 @default.
- W3193635235 hasRelatedWork W3167935049 @default.
- W3193635235 hasRelatedWork W3193565141 @default.
- W3193635235 hasRelatedWork W4226493464 @default.
- W3193635235 hasRelatedWork W4312417841 @default.
- W3193635235 hasRelatedWork W4380075502 @default.
- W3193635235 hasVolume "11" @default.
- W3193635235 isParatext "false" @default.
- W3193635235 isRetracted "false" @default.
- W3193635235 magId "3193635235" @default.
- W3193635235 workType "article" @default.