Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193669339> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3193669339 abstract "Recent years have witnessed a surge of interest in the application of artificial neural networks (ANNs) to the calibration of financial models. In this dissertation we explore two distinct but complementary applications of ANNs to the calibration of FX volatility models. We first consider Heston’s stochastic volatility model, and demonstrate how the calibration map from quoted implied volatilities to model parameters can be effectively learned using an ANN. Once the supervised training step has been performed, the trained net can be used to perform calibrations at speeds orders of magnitude faster than more conventional optimization-based approaches.We next turn our attention to a local-stochastic variant of the Heston model, in which the pure stochastic model is augmented with a local component — the leverage function — enabling exact re-pricing of the input calibration set. There exists an extensive literature concerned with the calibration of these local-stochastic volatility (LSV) models. We explore the possibility of approximating the leverage function using a series of ANNs. The nets are trained in an unsupervised learning routine which seeks to minimize the discrepancy between market and model option prices. The latter are computed via Monte Carlo, and variance reduction techniques prove crucial in bringing calibration times down to reasonable levels. In numerical tests we were unable to achieve calibration speeds comparable to those of alternative existing approaches, although the application of ANNs to the calibration of LSV models has several interesting features which make it worth consideration." @default.
- W3193669339 created "2021-08-30" @default.
- W3193669339 creator A5074509755 @default.
- W3193669339 date "2020-01-01" @default.
- W3193669339 modified "2023-09-27" @default.
- W3193669339 title "FX Volatility Calibration Using Artificial Neural Networks" @default.
- W3193669339 doi "https://doi.org/10.2139/ssrn.3798513" @default.
- W3193669339 hasPublicationYear "2020" @default.
- W3193669339 type Work @default.
- W3193669339 sameAs 3193669339 @default.
- W3193669339 citedByCount "0" @default.
- W3193669339 crossrefType "journal-article" @default.
- W3193669339 hasAuthorship W3193669339A5074509755 @default.
- W3193669339 hasConcept C105795698 @default.
- W3193669339 hasConcept C119857082 @default.
- W3193669339 hasConcept C126255220 @default.
- W3193669339 hasConcept C149782125 @default.
- W3193669339 hasConcept C153083717 @default.
- W3193669339 hasConcept C154945302 @default.
- W3193669339 hasConcept C165838908 @default.
- W3193669339 hasConcept C187625094 @default.
- W3193669339 hasConcept C194483076 @default.
- W3193669339 hasConcept C2779834249 @default.
- W3193669339 hasConcept C33923547 @default.
- W3193669339 hasConcept C41008148 @default.
- W3193669339 hasConcept C50644808 @default.
- W3193669339 hasConcept C85393063 @default.
- W3193669339 hasConcept C91602232 @default.
- W3193669339 hasConcept C93045229 @default.
- W3193669339 hasConceptScore W3193669339C105795698 @default.
- W3193669339 hasConceptScore W3193669339C119857082 @default.
- W3193669339 hasConceptScore W3193669339C126255220 @default.
- W3193669339 hasConceptScore W3193669339C149782125 @default.
- W3193669339 hasConceptScore W3193669339C153083717 @default.
- W3193669339 hasConceptScore W3193669339C154945302 @default.
- W3193669339 hasConceptScore W3193669339C165838908 @default.
- W3193669339 hasConceptScore W3193669339C187625094 @default.
- W3193669339 hasConceptScore W3193669339C194483076 @default.
- W3193669339 hasConceptScore W3193669339C2779834249 @default.
- W3193669339 hasConceptScore W3193669339C33923547 @default.
- W3193669339 hasConceptScore W3193669339C41008148 @default.
- W3193669339 hasConceptScore W3193669339C50644808 @default.
- W3193669339 hasConceptScore W3193669339C85393063 @default.
- W3193669339 hasConceptScore W3193669339C91602232 @default.
- W3193669339 hasConceptScore W3193669339C93045229 @default.
- W3193669339 hasLocation W31936693391 @default.
- W3193669339 hasOpenAccess W3193669339 @default.
- W3193669339 hasPrimaryLocation W31936693391 @default.
- W3193669339 hasRelatedWork W12236409 @default.
- W3193669339 hasRelatedWork W12422440 @default.
- W3193669339 hasRelatedWork W1407330 @default.
- W3193669339 hasRelatedWork W14506204 @default.
- W3193669339 hasRelatedWork W1688 @default.
- W3193669339 hasRelatedWork W2203340 @default.
- W3193669339 hasRelatedWork W3006012 @default.
- W3193669339 hasRelatedWork W3331290 @default.
- W3193669339 hasRelatedWork W8688885 @default.
- W3193669339 hasRelatedWork W3660200 @default.
- W3193669339 isParatext "false" @default.
- W3193669339 isRetracted "false" @default.
- W3193669339 magId "3193669339" @default.
- W3193669339 workType "article" @default.