Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193692386> ?p ?o ?g. }
- W3193692386 endingPage "5691" @default.
- W3193692386 startingPage "5691" @default.
- W3193692386 abstract "This paper concerns a new methodology for accuracy assessment of GPS (Global Positioning System) verified experimentally with LiDAR (Light Detection and Ranging) data alignment at continent scale for autonomous driving safety analysis. Accuracy of an autonomous driving vehicle positioning within a lane on the road is one of the key safety considerations and the main focus of this paper. The accuracy of GPS positioning is checked by comparing it with mobile mapping tracks in the recorded high-definition source. The aim of the comparison is to see if the GPS positioning remains accurate up to the dimensions of the lane where the vehicle is driving. The goal is to align all the available LiDAR car trajectories to confirm the of accuracy of GNSS + INS (Global Navigation Satellite System + Inertial Navigation System). For this reason, the use of LiDAR metric measurements for data alignment implemented using SLAM (Simultaneous Localization and Mapping) was investigated, assuring no systematic drift by applying GNSS+INS constraints. The methodology was verified experimentally using arbitrarily chosen measurement instruments (NovAtel GNSS + INS, Velodyne HDL32 LiDAR) mounted onto mobile mapping systems. The accuracy was assessed and confirmed by the alignment of 32,785 trajectories with a total length of 1,159,956.9 km and a total of 186.4 × 109 optimized parameters (six degrees of freedom of poses) that cover the United States region in the 2016–2019 period. The alignment improves the trajectories; thus the final map is consistent. The proposed methodology extends the existing methods of global positioning system accuracy assessment, focusing on realistic environmental and driving conditions. The impact of global positioning system accuracy on autonomous car safety is discussed. It is shown that 99% of the assessed data satisfy the safety requirements (driving within lanes of 3.6 m) for Mid-Size (width 1.85 m, length 4.87 m) vehicles and 95% for Six-Wheel Pickup (width 2.03–2.43 m, length 5.32–6.76 m). The conclusion is that this methodology has great potential for global positioning accuracy assessment at the global scale for autonomous driving applications. LiDAR data alignment is introduced as a novel approach to GNSS + INS accuracy confirmation. Further research is needed to solve the identified challenges." @default.
- W3193692386 created "2021-08-30" @default.
- W3193692386 creator A5005227826 @default.
- W3193692386 creator A5020453993 @default.
- W3193692386 creator A5025039635 @default.
- W3193692386 creator A5026531683 @default.
- W3193692386 creator A5033797667 @default.
- W3193692386 creator A5037576858 @default.
- W3193692386 creator A5043627194 @default.
- W3193692386 creator A5055852189 @default.
- W3193692386 creator A5078560006 @default.
- W3193692386 creator A5085783526 @default.
- W3193692386 creator A5089583465 @default.
- W3193692386 date "2021-08-24" @default.
- W3193692386 modified "2023-09-24" @default.
- W3193692386 title "A Novel Approach to Global Positioning System Accuracy Assessment, Verified on LiDAR Alignment of One Million Kilometers at a Continent Scale, as a Foundation for Autonomous DRIVING Safety Analysis" @default.
- W3193692386 cites W1559010065 @default.
- W3193692386 cites W1883991860 @default.
- W3193692386 cites W1977259876 @default.
- W3193692386 cites W1977369603 @default.
- W3193692386 cites W2009840425 @default.
- W3193692386 cites W2011159695 @default.
- W3193692386 cites W2021851106 @default.
- W3193692386 cites W2027661541 @default.
- W3193692386 cites W2049456357 @default.
- W3193692386 cites W2049981393 @default.
- W3193692386 cites W2054804188 @default.
- W3193692386 cites W2057646476 @default.
- W3193692386 cites W2076244702 @default.
- W3193692386 cites W2085261163 @default.
- W3193692386 cites W2099576286 @default.
- W3193692386 cites W2127739279 @default.
- W3193692386 cites W2153054365 @default.
- W3193692386 cites W2155695215 @default.
- W3193692386 cites W2202678121 @default.
- W3193692386 cites W2335829695 @default.
- W3193692386 cites W2462618178 @default.
- W3193692386 cites W2467077495 @default.
- W3193692386 cites W2467615243 @default.
- W3193692386 cites W2558027072 @default.
- W3193692386 cites W2753940902 @default.
- W3193692386 cites W2765920222 @default.
- W3193692386 cites W2768396266 @default.
- W3193692386 cites W2789621390 @default.
- W3193692386 cites W2891036496 @default.
- W3193692386 cites W2909908358 @default.
- W3193692386 cites W2938170127 @default.
- W3193692386 cites W2948273655 @default.
- W3193692386 cites W3005104873 @default.
- W3193692386 cites W3047375952 @default.
- W3193692386 cites W3109242302 @default.
- W3193692386 cites W4238710106 @default.
- W3193692386 cites W4239569515 @default.
- W3193692386 doi "https://doi.org/10.3390/s21175691" @default.
- W3193692386 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8434143" @default.
- W3193692386 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34502581" @default.
- W3193692386 hasPublicationYear "2021" @default.
- W3193692386 type Work @default.
- W3193692386 sameAs 3193692386 @default.
- W3193692386 citedByCount "7" @default.
- W3193692386 countsByYear W31936923862021 @default.
- W3193692386 countsByYear W31936923862022 @default.
- W3193692386 countsByYear W31936923862023 @default.
- W3193692386 crossrefType "journal-article" @default.
- W3193692386 hasAuthorship W3193692386A5005227826 @default.
- W3193692386 hasAuthorship W3193692386A5020453993 @default.
- W3193692386 hasAuthorship W3193692386A5025039635 @default.
- W3193692386 hasAuthorship W3193692386A5026531683 @default.
- W3193692386 hasAuthorship W3193692386A5033797667 @default.
- W3193692386 hasAuthorship W3193692386A5037576858 @default.
- W3193692386 hasAuthorship W3193692386A5043627194 @default.
- W3193692386 hasAuthorship W3193692386A5055852189 @default.
- W3193692386 hasAuthorship W3193692386A5078560006 @default.
- W3193692386 hasAuthorship W3193692386A5085783526 @default.
- W3193692386 hasAuthorship W3193692386A5089583465 @default.
- W3193692386 hasBestOaLocation W31936923861 @default.
- W3193692386 hasConcept C115051666 @default.
- W3193692386 hasConcept C127413603 @default.
- W3193692386 hasConcept C128651787 @default.
- W3193692386 hasConcept C14279187 @default.
- W3193692386 hasConcept C16345878 @default.
- W3193692386 hasConcept C176217482 @default.
- W3193692386 hasConcept C205649164 @default.
- W3193692386 hasConcept C21547014 @default.
- W3193692386 hasConcept C2524010 @default.
- W3193692386 hasConcept C2776821279 @default.
- W3193692386 hasConcept C2778027091 @default.
- W3193692386 hasConcept C2778755073 @default.
- W3193692386 hasConcept C33923547 @default.
- W3193692386 hasConcept C41008148 @default.
- W3193692386 hasConcept C51399673 @default.
- W3193692386 hasConcept C58640448 @default.
- W3193692386 hasConcept C60229501 @default.
- W3193692386 hasConcept C62649853 @default.
- W3193692386 hasConcept C76155785 @default.
- W3193692386 hasConceptScore W3193692386C115051666 @default.
- W3193692386 hasConceptScore W3193692386C127413603 @default.
- W3193692386 hasConceptScore W3193692386C128651787 @default.