Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193719830> ?p ?o ?g. }
- W3193719830 endingPage "3337" @default.
- W3193719830 startingPage "3326" @default.
- W3193719830 abstract "ConspectusFossil fuel shortage and severe climate changes due to global warming have prompted extensive research on carbon-neutral and renewable energy resources. Hydrogen gas (H2), a clean and high energy density fuel, has emerged as a potential solution for both fulfilling energy demands and diminishing the emission of greenhouse gases. Currently, water oxidation (WO) constitutes the bottleneck in the overall process of producing H2 from water. As a result, the design of efficient catalysts for WO has become an intensively pursued area of research in recent years. Among all the molecular catalysts reported to date, ruthenium-based catalysts have attracted particular attention due to their robust nature and higher activity compared to catalysts based on other transition metals.Over the past two decades, we and others have studied a wide range of ruthenium complexes displaying impressive catalytic performance for WO in terms of turnover number (TON) and turnover frequency (TOF). However, to produce practically applicable electrochemical, photochemical, or photo-electrochemical WO reactors, further improvement of the catalysts’ structure to decrease the overpotential and increase the WO rate is of utmost importance. WO reaction, that is, the production of molecular oxygen and protons from water, requires the formation of an O–O bond through the orchestration of multiple proton and electron transfers. Promotion of these processes using redox noninnocent ligand frameworks that can accept and transfer electrons has therefore attracted substantial attention. The strategic modifications of the ligand structure in ruthenium complexes to enable proton-coupled electron transfer (PCET) and atom proton transfer (APT; in the context of WO, it is the oxygen atom (metal oxo) transfer to the oxygen atom of a water molecule in concert with proton transfer to another water molecule) to facilitate the O–O bond formation have played a central role in these efforts.In particular, promising results have been obtained with ligand frameworks containing carboxylic acid groups that either are directly bonded to the metal center or reside in the close vicinity. The improvement of redox and chemical properties of the catalysts by introduction of carboxylate groups in the ligands has proven to be quite general as demonstrated for a range of mono- and dinuclear ruthenium complexes featuring ligand scaffolds based on pyridine, imidazole, and pyridazine cores. In the first coordination sphere, the carboxylate groups are firmly coordinated to the metal center as negatively charged ligands, improving the stability of the complexes and preventing metal leaching during catalysis. Another important phenomenon is the reduction of the potentials required for the formation of higher valent intermediates, especially metal-oxo species, which take active part in the key O–O bond formation step. Furthermore, the free carboxylic acid/carboxylate units in the proximity to the active center have shown exciting proton donor/acceptor properties (through PCET or APT, chemically noninnocent) that can dramatically improve the rate as well as the overpotential of the WO reaction." @default.
- W3193719830 created "2021-08-30" @default.
- W3193719830 creator A5008819937 @default.
- W3193719830 creator A5020651941 @default.
- W3193719830 creator A5024432925 @default.
- W3193719830 creator A5033861891 @default.
- W3193719830 creator A5045814902 @default.
- W3193719830 creator A5088071421 @default.
- W3193719830 date "2021-08-17" @default.
- W3193719830 modified "2023-10-13" @default.
- W3193719830 title "The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation" @default.
- W3193719830 cites W1017297160 @default.
- W3193719830 cites W1975246189 @default.
- W3193719830 cites W1981768663 @default.
- W3193719830 cites W1982373014 @default.
- W3193719830 cites W1985558712 @default.
- W3193719830 cites W1987275920 @default.
- W3193719830 cites W1988718155 @default.
- W3193719830 cites W2006227591 @default.
- W3193719830 cites W2013877842 @default.
- W3193719830 cites W2023879527 @default.
- W3193719830 cites W2025161190 @default.
- W3193719830 cites W2030938880 @default.
- W3193719830 cites W2035759636 @default.
- W3193719830 cites W2051077995 @default.
- W3193719830 cites W2055663482 @default.
- W3193719830 cites W2062543269 @default.
- W3193719830 cites W2064158450 @default.
- W3193719830 cites W2074880155 @default.
- W3193719830 cites W2082895951 @default.
- W3193719830 cites W2093879789 @default.
- W3193719830 cites W2109853465 @default.
- W3193719830 cites W2116396555 @default.
- W3193719830 cites W2126669798 @default.
- W3193719830 cites W2164476393 @default.
- W3193719830 cites W2239220623 @default.
- W3193719830 cites W2244699475 @default.
- W3193719830 cites W2288655962 @default.
- W3193719830 cites W2552423250 @default.
- W3193719830 cites W2592228110 @default.
- W3193719830 cites W2620344936 @default.
- W3193719830 cites W2745848631 @default.
- W3193719830 cites W2914669514 @default.
- W3193719830 cites W2950252805 @default.
- W3193719830 cites W2951169747 @default.
- W3193719830 cites W3004953123 @default.
- W3193719830 cites W3048895704 @default.
- W3193719830 cites W3084393826 @default.
- W3193719830 cites W3118284929 @default.
- W3193719830 cites W3126010677 @default.
- W3193719830 cites W4238850712 @default.
- W3193719830 cites W4256675596 @default.
- W3193719830 cites W4376595665 @default.
- W3193719830 doi "https://doi.org/10.1021/acs.accounts.1c00298" @default.
- W3193719830 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8427742" @default.
- W3193719830 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34488345" @default.
- W3193719830 hasPublicationYear "2021" @default.
- W3193719830 type Work @default.
- W3193719830 sameAs 3193719830 @default.
- W3193719830 citedByCount "29" @default.
- W3193719830 countsByYear W31937198302022 @default.
- W3193719830 countsByYear W31937198302023 @default.
- W3193719830 crossrefType "journal-article" @default.
- W3193719830 hasAuthorship W3193719830A5008819937 @default.
- W3193719830 hasAuthorship W3193719830A5020651941 @default.
- W3193719830 hasAuthorship W3193719830A5024432925 @default.
- W3193719830 hasAuthorship W3193719830A5033861891 @default.
- W3193719830 hasAuthorship W3193719830A5045814902 @default.
- W3193719830 hasAuthorship W3193719830A5088071421 @default.
- W3193719830 hasBestOaLocation W31937198301 @default.
- W3193719830 hasConcept C116569031 @default.
- W3193719830 hasConcept C123669783 @default.
- W3193719830 hasConcept C147789679 @default.
- W3193719830 hasConcept C151730666 @default.
- W3193719830 hasConcept C161790260 @default.
- W3193719830 hasConcept C170493617 @default.
- W3193719830 hasConcept C17525397 @default.
- W3193719830 hasConcept C178790620 @default.
- W3193719830 hasConcept C185592680 @default.
- W3193719830 hasConcept C186460083 @default.
- W3193719830 hasConcept C2779343474 @default.
- W3193719830 hasConcept C52859227 @default.
- W3193719830 hasConcept C55493867 @default.
- W3193719830 hasConcept C555196967 @default.
- W3193719830 hasConcept C75473681 @default.
- W3193719830 hasConcept C86803240 @default.
- W3193719830 hasConceptScore W3193719830C116569031 @default.
- W3193719830 hasConceptScore W3193719830C123669783 @default.
- W3193719830 hasConceptScore W3193719830C147789679 @default.
- W3193719830 hasConceptScore W3193719830C151730666 @default.
- W3193719830 hasConceptScore W3193719830C161790260 @default.
- W3193719830 hasConceptScore W3193719830C170493617 @default.
- W3193719830 hasConceptScore W3193719830C17525397 @default.
- W3193719830 hasConceptScore W3193719830C178790620 @default.
- W3193719830 hasConceptScore W3193719830C185592680 @default.
- W3193719830 hasConceptScore W3193719830C186460083 @default.
- W3193719830 hasConceptScore W3193719830C2779343474 @default.
- W3193719830 hasConceptScore W3193719830C52859227 @default.