Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193812140> ?p ?o ?g. }
- W3193812140 endingPage "112651" @default.
- W3193812140 startingPage "112651" @default.
- W3193812140 abstract "High resolution imaging spectrometers are prerequisite to address significant data gaps in inland optical water quality monitoring. In this work, we provide a data-driven alignment of chlorophyll-a and turbidity derived from the Sentinel-2 MultiSpectral Imager (MSI) with corresponding Sentinel-3 Ocean and Land Colour Instrument (OLCI) products. For chlorophyll-a retrieval, empirical 'ocean colour' blue-green band ratios and a near infra-red (NIR) band ratio algorithm, as well as a semi-analytical three-band NIR-red ratio algorithm, were included in the analysis. Six million co-registrations with MSI and OLCI spanning 24 lakes across five continents were analysed. Following atmospheric correction with POLYMER, the reflectance distributions of the red and NIR bands showed close similarity between the two sensors, whereas the distribution for blue and green bands was positively skewed in the MSI results compared to OLCI. Whilst it is not possible from this analysis to determine the accuracy of reflectance retrieved with either MSI or OLCI results, optimizing water quality algorithms for MSI against those previously derived for the Envisat Medium Resolution Imaging Spectrometer (MERIS) and its follow-on OLCI, supports the wider use of MSI for aquatic applications. Chlorophyll-a algorithms were thus tuned for MSI against concurrent OLCI observations, resulting in significant improvements against the original algorithm coefficients. The mean absolute difference (MAD) for the blue-green band ratio algorithm decreased from 1.95 mg m-3 to 1.11 mg m-3, whilst the correlation coefficient increased from 0.61 to 0.80. For the NIR-red band ratio algorithms improvements were modest, with the MAD decreasing from 4.68 to 4.64 mg m-3 for the empirical red band ratio algorithm, and 3.73 to 3.67 for the semi-analytical 3-band algorithm. Three implementations of the turbidity algorithm showed improvement after tuning with the resulting distributions having reduced bias. The MAD reduced from 0.85 to 0.72, 1.22 to 1.10 and 1.93 to 1.55 FNU for the 665, 708 and 778 nm implementations respectively. However, several sources of uncertainty remain: adjacent land showed high divergence between the sensors, suggesting that high product uncertainty near land continues to be an issue for small water bodies, while it cannot be stated at this point whether MSI or OLCI results are differentially affected. The effect of spectrally wider bands of the MSI on algorithm sensitivity to chlorophyll-a and turbidity cannot be fully established without further availability of in situ optical measurements." @default.
- W3193812140 created "2021-08-30" @default.
- W3193812140 creator A5039434057 @default.
- W3193812140 creator A5059896217 @default.
- W3193812140 creator A5071649667 @default.
- W3193812140 date "2021-11-01" @default.
- W3193812140 modified "2023-10-14" @default.
- W3193812140 title "Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-a and turbidity algorithms" @default.
- W3193812140 cites W1498849780 @default.
- W3193812140 cites W1967906870 @default.
- W3193812140 cites W1970370394 @default.
- W3193812140 cites W1975285091 @default.
- W3193812140 cites W1982594136 @default.
- W3193812140 cites W1999711192 @default.
- W3193812140 cites W2005660297 @default.
- W3193812140 cites W2007101051 @default.
- W3193812140 cites W2020972217 @default.
- W3193812140 cites W2021312391 @default.
- W3193812140 cites W2026440158 @default.
- W3193812140 cites W2048956808 @default.
- W3193812140 cites W2056003716 @default.
- W3193812140 cites W2057646508 @default.
- W3193812140 cites W2063012028 @default.
- W3193812140 cites W2078860594 @default.
- W3193812140 cites W2092983144 @default.
- W3193812140 cites W2100738276 @default.
- W3193812140 cites W2102276060 @default.
- W3193812140 cites W2105900206 @default.
- W3193812140 cites W2107301689 @default.
- W3193812140 cites W2118478759 @default.
- W3193812140 cites W2131713496 @default.
- W3193812140 cites W2137896344 @default.
- W3193812140 cites W2138116293 @default.
- W3193812140 cites W2149876895 @default.
- W3193812140 cites W2191483095 @default.
- W3193812140 cites W2346454743 @default.
- W3193812140 cites W2499899645 @default.
- W3193812140 cites W2513884524 @default.
- W3193812140 cites W2738218963 @default.
- W3193812140 cites W2751239848 @default.
- W3193812140 cites W2764084117 @default.
- W3193812140 cites W2789802383 @default.
- W3193812140 cites W2803109062 @default.
- W3193812140 cites W2806229524 @default.
- W3193812140 cites W2808645289 @default.
- W3193812140 cites W2888697665 @default.
- W3193812140 cites W2898245673 @default.
- W3193812140 cites W2925288141 @default.
- W3193812140 cites W2938079525 @default.
- W3193812140 cites W2944923679 @default.
- W3193812140 cites W2952299871 @default.
- W3193812140 cites W2979313052 @default.
- W3193812140 cites W2982958607 @default.
- W3193812140 cites W3004411778 @default.
- W3193812140 cites W3004942926 @default.
- W3193812140 cites W3008262834 @default.
- W3193812140 cites W3017247426 @default.
- W3193812140 cites W3026835979 @default.
- W3193812140 cites W3083637286 @default.
- W3193812140 cites W3103145119 @default.
- W3193812140 cites W3134465096 @default.
- W3193812140 doi "https://doi.org/10.1016/j.rse.2021.112651" @default.
- W3193812140 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8507437" @default.
- W3193812140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34732943" @default.
- W3193812140 hasPublicationYear "2021" @default.
- W3193812140 type Work @default.
- W3193812140 sameAs 3193812140 @default.
- W3193812140 citedByCount "28" @default.
- W3193812140 countsByYear W31938121402022 @default.
- W3193812140 countsByYear W31938121402023 @default.
- W3193812140 crossrefType "journal-article" @default.
- W3193812140 hasAuthorship W3193812140A5039434057 @default.
- W3193812140 hasAuthorship W3193812140A5059896217 @default.
- W3193812140 hasAuthorship W3193812140A5071649667 @default.
- W3193812140 hasBestOaLocation W31938121401 @default.
- W3193812140 hasConcept C108597893 @default.
- W3193812140 hasConcept C111368507 @default.
- W3193812140 hasConcept C11413529 @default.
- W3193812140 hasConcept C120665830 @default.
- W3193812140 hasConcept C121332964 @default.
- W3193812140 hasConcept C127313418 @default.
- W3193812140 hasConcept C1276947 @default.
- W3193812140 hasConcept C173163844 @default.
- W3193812140 hasConcept C183852935 @default.
- W3193812140 hasConcept C19269812 @default.
- W3193812140 hasConcept C2776939893 @default.
- W3193812140 hasConcept C2778329001 @default.
- W3193812140 hasConcept C33390570 @default.
- W3193812140 hasConcept C39432304 @default.
- W3193812140 hasConcept C41008148 @default.
- W3193812140 hasConcept C62649853 @default.
- W3193812140 hasConcept C64016661 @default.
- W3193812140 hasConceptScore W3193812140C108597893 @default.
- W3193812140 hasConceptScore W3193812140C111368507 @default.
- W3193812140 hasConceptScore W3193812140C11413529 @default.
- W3193812140 hasConceptScore W3193812140C120665830 @default.
- W3193812140 hasConceptScore W3193812140C121332964 @default.
- W3193812140 hasConceptScore W3193812140C127313418 @default.